A side channel vulnerability on some of the AMD CPUs may allow an attacker to influence the return address prediction. This may result in speculative execution at an attacker-controlled address, potentially leading to information disclosure.
Insufficient control flow management in AmdCpmOemSmm may allow a privileged attacker to tamper with the SMM handler potentially leading to an escalation of privileges.
Insufficient control flow management in AmdCpmGpioInitSmm may allow a privileged attacker to tamper with the SMM handler potentially leading to escalation of privileges.
An attacker with root account privileges can load any legitimately signed firmware image into the Audio Co-Processor (ACP,) irrespective of the respective signing key being declared as usable for authenticating an ACP firmware image, potentially resulting in a denial of service.
A malformed SMI (System Management Interface) command may allow an attacker to establish a corrupted SMI Trigger Info data structure, potentially leading to out-of-bounds memory reads and writes when triggering an SMI resulting in a potential loss of resources.
Insufficient bound checks in the System Management Unit (SMU) may result in a system voltage malfunction that could result in denial of resources and/or possibly denial of service.
Insufficient General Purpose IO (GPIO) bounds check in System Management Unit (SMU) may result in access/updates from/to invalid address space that could result in denial of service.
Insufficient checks in System Management Unit (SMU) FeatureConfig may result in reenabling features potentially resulting in denial of resources and/or denial of service.
Improper validation of the BIOS directory may allow for searches to read beyond the directory table copy in RAM, exposing out of bounds memory contents, resulting in a potential denial of service.