A timing based side channel exists in the OpenSSL RSA Decryption implementation
which could be sufficient to recover a plaintext across a network in a
Bleichenbacher style attack. To achieve a successful decryption an attacker
would have to be able to send a very large number of trial messages for
decryption. The vulnerability affects all RSA padding modes: PKCS#1 v1.5,
RSA-OEAP and RSASVE.
For example, in a TLS connection, RSA is commonly used by a client to send an
encrypted pre-master secret to the server. An attacker that had observed a
genuine connection between a client and a server could use this flaw to send
trial messages to the server and record the time taken to process them. After a
sufficiently large number of messages the attacker could recover the pre-master
secret used for the original connection and thus be able to decrypt the
application data sent over that connection.
The function PEM_read_bio_ex() reads a PEM file from a BIO and parses and
decodes the "name" (e.g. "CERTIFICATE"), any header data and the payload data.
If the function succeeds then the "name_out", "header" and "data" arguments are
populated with pointers to buffers containing the relevant decoded data. The
caller is responsible for freeing those buffers. It is possible to construct a
PEM file that results in 0 bytes of payload data. In this case PEM_read_bio_ex()
will return a failure code but will populate the header argument with a pointer
to a buffer that has already been freed. If the caller also frees this buffer
then a double free will occur. This will most likely lead to a crash. This
could be exploited by an attacker who has the ability to supply malicious PEM
files for parsing to achieve a denial of service attack.
The functions PEM_read_bio() and PEM_read() are simple wrappers around
PEM_read_bio_ex() and therefore these functions are also directly affected.
These functions are also called indirectly by a number of other OpenSSL
functions including PEM_X509_INFO_read_bio_ex() and
SSL_CTX_use_serverinfo_file() which are also vulnerable. Some OpenSSL internal
uses of these functions are not vulnerable because the caller does not free the
header argument if PEM_read_bio_ex() returns a failure code. These locations
include the PEM_read_bio_TYPE() functions as well as the decoders introduced in
OpenSSL 3.0.
The OpenSSL asn1parse command line application is also impacted by this issue.
zlib through 1.2.12 has a heap-based buffer over-read or buffer overflow in inflate in inflate.c via a large gzip header extra field. NOTE: only applications that call inflateGetHeader are affected. Some common applications bundle the affected zlib source code but may be unable to call inflateGetHeader (e.g., see the nodejs/node reference).
The Diffie-Hellman Key Agreement Protocol allows remote attackers (from the client side) to send arbitrary numbers that are actually not public keys, and trigger expensive server-side DHE modular-exponentiation calculations, aka a D(HE)at or D(HE)ater attack. The client needs very little CPU resources and network bandwidth. The attack may be more disruptive in cases where a client can require a server to select its largest supported key size. The basic attack scenario is that the client must claim that it can only communicate with DHE, and the server must be configured to allow DHE.
The L2TP implementation of MPD before 5.9 allows a remote attacker who can send specifically crafted L2TP control packet with AVP Q.931 Cause Code to execute arbitrary code or cause a denial of service (memory corruption).
The PPP implementation of MPD before 5.9 allows a remote attacker who can send specifically crafted PPP authentication message to cause the daemon to read beyond allocated memory buffer, which would result in a denial of service condition.