strongSwan before 5.9.8 allows remote attackers to cause a denial of service in the revocation plugin by sending a crafted end-entity (and intermediate CA) certificate that contains a CRL/OCSP URL that points to a server (under the attacker's control) that doesn't properly respond but (for example) just does nothing after the initial TCP handshake, or sends an excessive amount of application data.
Flooding SNS firewall versions 3.7.0 to 3.7.29, 3.11.0 to 3.11.17, 4.2.0 to 4.2.10, and 4.3.0 to 4.3.6 with specific forged traffic, can lead to SNS DoS.
zlib through 1.2.12 has a heap-based buffer over-read or buffer overflow in inflate in inflate.c via a large gzip header extra field. NOTE: only applications that call inflateGetHeader are affected. Some common applications bundle the affected zlib source code but may be unable to call inflateGetHeader (e.g., see the nodejs/node reference).
An issue was discovered in Stormshield Network Security (SNS) 4.3.x before 4.3.8. The event logging of the ASQ sofbus lacbus plugin triggers the dereferencing of a NULL pointer, leading to a crash of SNS. An attacker could exploit this vulnerability via forged sofbus lacbus traffic to cause a firmware crash.
In Stormshield Network Security (SNS) before 3.7.25, 3.8.x through 3.11.x before 3.11.13, 4.x before 4.2.10, and 4.3.x before 4.3.5, a flood of connections to the SSLVPN service might lead to saturation of the loopback interface. This could result in the blocking of almost all network traffic, making the firewall unreachable. An attacker could exploit this via forged and properly timed traffic to cause a denial of service.
The Diffie-Hellman Key Agreement Protocol allows remote attackers (from the client side) to send arbitrary numbers that are actually not public keys, and trigger expensive server-side DHE modular-exponentiation calculations, aka a D(HE)at or D(HE)ater attack. The client needs very little CPU resources and network bandwidth. The attack may be more disruptive in cases where a client can require a server to select its largest supported key size. The basic attack scenario is that the client must claim that it can only communicate with DHE, and the server must be configured to allow DHE.
The L2TP implementation of MPD before 5.9 allows a remote attacker who can send specifically crafted L2TP control packet with AVP Q.931 Cause Code to execute arbitrary code or cause a denial of service (memory corruption).
The PPP implementation of MPD before 5.9 allows a remote attacker who can send specifically crafted PPP authentication message to cause the daemon to read beyond allocated memory buffer, which would result in a denial of service condition.