A vulnerability in the Topology Discovery Service of Cisco One Platform Kit (onePK) in Cisco IOS Software, Cisco IOS XE Software, Cisco IOS XR Software, and Cisco NX-OS Software could allow an unauthenticated, adjacent attacker to execute arbitrary code or cause a denial of service (DoS) condition on an affected device. The vulnerability is due to insufficient length restrictions when the onePK Topology Discovery Service parses Cisco Discovery Protocol messages. An attacker could exploit this vulnerability by sending a malicious Cisco Discovery Protocol message to an affected device. An exploit could allow the attacker to cause a stack overflow, which could allow the attacker to execute arbitrary code with administrative privileges, or to cause a process crash, which could result in a reload of the device and cause a DoS condition.
The SNMPv2 implementation in Cisco IOS XR allows remote authenticated users to cause a denial of service (snmpd daemon reload) via a malformed SNMP packet, aka Bug ID CSCur25858.
Cisco IOS XR on ASR 9000 devices does not properly use compression for port-range and address-range encoding, which allows remote attackers to bypass intended Typhoon line-card ACL restrictions via transit traffic, aka Bug ID CSCup30133.
The CLI in Cisco IOS XR allows remote authenticated users to obtain sensitive information via unspecified commands, aka Bug IDs CSCuq42336, CSCuq76853, CSCuq76873, and CSCuq45383.
Cisco IOS XR on Trident line cards in ASR 9000 devices lacks a static punt policer, which allows remote attackers to cause a denial of service (CPU consumption) by sending many crafted packets, aka Bug ID CSCun83985.
The DHCPv6 implementation in Cisco IOS XR allows remote attackers to cause a denial of service (process hang) via a malformed packet, aka Bug ID CSCul80924.
The DHCPv6 implementation in Cisco IOS XR allows remote attackers to cause a denial of service (device crash) via a malformed packet, aka Bug IDs CSCum85558, CSCum20949, CSCul61849, and CSCul71149.