A vulnerability in the password change feature of Cisco Firepower Management Center (FMC) software could allow an unauthenticated, remote attacker to determine valid user names on an affected device.
This vulnerability is due to improper authentication of password update responses. An attacker could exploit this vulnerability by forcing a password reset on an affected device. A successful exploit could allow the attacker to determine valid user names in the unauthenticated response to a forced password reset.
A vulnerability in the SSL VPN feature for Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause an affected device to reload unexpectedly, resulting in a denial of service (DoS) condition.
This vulnerability is due to a logic error in memory management when the device is handling SSL VPN connections. An attacker could exploit this vulnerability by sending crafted SSL/TLS packets to the SSL VPN server of the affected device. A successful exploit could allow the attacker to cause the device to reload, resulting in a DoS condition.
A vulnerability in the VPN web client services feature of Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to conduct a cross-site scripting (XSS) attack against a browser that is accessing an affected device. This vulnerability is due to improper validation of user-supplied input to application endpoints. An attacker could exploit this vulnerability by persuading a user to follow a link designed to submit malicious input to the affected application. A successful exploit could allow the attacker to execute arbitrary HTML or script code in the browser in the context of the web services page.
A vulnerability in the Snort 2 and Snort 3 TCP and UDP detection engine of Cisco Firepower Threat Defense (FTD) Software for Cisco Firepower 2100 Series Appliances could allow an unauthenticated, remote attacker to cause memory corruption, which could cause the Snort detection engine to restart unexpectedly.
This vulnerability is due to improper memory management when the Snort detection engine processes specific TCP or UDP packets. An attacker could exploit this vulnerability by sending crafted TCP or UDP packets through a device that is inspecting traffic using the Snort detection engine. A successful exploit could allow the attacker to restart the Snort detection engine repeatedly, which could cause a denial of service (DoS) condition. The DoS condition impacts only the traffic through the device that is examined by the Snort detection engine. The device can still be managed over the network.
Note: Once a memory block is corrupted, it cannot be cleared until the Cisco Firepower 2100 Series Appliance is manually reloaded. This means that the Snort detection engine could crash repeatedly, causing traffic that is processed by the Snort detection engine to be dropped until the device is manually reloaded.
A vulnerability in the AnyConnect firewall for Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to bypass a configured access control list (ACL) and allow traffic that should have been denied to flow through an affected device. This vulnerability is due to a logic error in populating group ACLs when an AnyConnect client establishes a new session toward an affected device. An attacker could exploit this vulnerability by establishing an AnyConnect connection to the affected device. A successful exploit could allow the attacker to bypass configured ACL rules.
A vulnerability in the AnyConnect firewall for Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to bypass a configured access control list (ACL) and allow traffic that should have been denied to flow through an affected device. This vulnerability is due to a logic error in populating group ACLs when an AnyConnect client establishes a new session toward an affected device. An attacker could exploit this vulnerability by establishing an AnyConnect connection to the affected device. A successful exploit could allow the attacker to bypass configured ACL rules.
A vulnerability in the Simple Network Management Protocol (SNMP) feature of Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an authenticated, remote attacker to cause an unexpected reload of the device.
This vulnerability is due to insufficient input validation of SNMP packets. An attacker could exploit this vulnerability by sending a crafted SNMP request to an affected device using IPv4 or IPv6. A successful exploit could allow the attacker to cause the affected device to reload, resulting in a denial of service (DoS) condition. This vulnerability affects all versions of SNMP (versions 1, 2c, and 3) and requires a valid SNMP community string or valid SNMPv3 user credentials.
A vulnerability in the implementation of SAML 2.0 single sign-on (SSO) for remote access VPN services in Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an authenticated, remote attacker to successfully establish a VPN session on an affected device. This vulnerability is due to improper separation of authorization domains when using SAML authentication. An attacker could exploit this vulnerability by using valid credentials to successfully authenticate using their designated connection profile (tunnel group), intercepting the SAML SSO token that is sent back from the Cisco ASA device, and then submitting the same SAML SSO token to a different tunnel group for authentication. A successful exploit could allow the attacker to establish a remote access VPN session using a connection profile that they are not authorized to use and connect to secured networks behind the affected device that they are not authorized to access. For successful exploitation, the attacker must have valid remote access VPN user credentials.
A vulnerability in the file policy feature that is used to inspect encrypted archive files of Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to bypass a configured file policy to block an encrypted archive file. This vulnerability exists because of a logic error when a specific class of encrypted archive files is inspected. An attacker could exploit this vulnerability by sending a crafted, encrypted archive file through the affected device. A successful exploit could allow the attacker to send an encrypted archive file, which could contain malware and should have been blocked and dropped at the Cisco FTD device.
A vulnerability in the management and VPN web servers for Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause the device to reload unexpectedly, resulting in a denial of service (DoS) condition.
This vulnerability is due to incomplete error checking when parsing an HTTP header. An attacker could exploit this vulnerability by sending a crafted HTTP request to a targeted web server on a device. A successful exploit could allow the attacker to cause a DoS condition when the device reloads.