A vulnerability in the generic routing encapsulation (GRE) tunnel decapsulation feature of Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device.
This vulnerability is due to a memory handling error that occurs when GRE traffic is processed. An attacker could exploit this vulnerability by sending a crafted GRE payload through an affected device. A successful exploit could allow the attacker to cause the device to restart, resulting in a DoS condition.
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-ftd-gre-dos-hmedHQPM ["https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-ftd-gre-dos-hmedHQPM"]
This advisory is part of the November 2022 release of the Cisco ASA, FTD, and FMC Security Advisory Bundled publication.
A vulnerability in the management web server of Cisco Firepower Threat Defense (FTD) Software could allow an authenticated, remote attacker with high privileges to execute configuration commands on an affected system.
This vulnerability exists because access to HTTPS endpoints is not properly restricted on an affected device. An attacker could exploit this vulnerability by sending specific messages to the affected HTTPS handler. A successful exploit could allow the attacker to perform configuration changes on the affected system, which should be configured and managed only through Cisco Firepower Management Center (FMC) Software.
A vulnerability in the TLS handler of Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to gain access to sensitive information.
This vulnerability is due to improper implementation of countermeasures against a Bleichenbacher attack on a device that uses SSL decryption policies. An attacker could exploit this vulnerability by sending crafted TLS messages to an affected device, which would act as an oracle and allow the attacker to carry out a chosen-ciphertext attack. A successful exploit could allow the attacker to perform cryptanalytic operations that may allow decryption of previously captured TLS sessions to the affected device.
A vulnerability in the CLI of Cisco Firepower Threat Defense (FTD) Software and Cisco FXOS Software could allow an authenticated, local attacker to execute arbitrary commands on the underlying operating system as root.
This vulnerability is due to improper input validation for specific CLI commands. An attacker could exploit this vulnerability by injecting operating system commands into a legitimate command. A successful exploit could allow the attacker to escape the restricted command prompt and execute arbitrary commands on the underlying operating system. To successfully exploit this vulnerability, an attacker would need valid Administrator credentials.
A vulnerability in the handling of RSA keys on devices running Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to retrieve an RSA private key. This vulnerability is due to a logic error when the RSA key is stored in memory on a hardware platform that performs hardware-based cryptography. An attacker could exploit this vulnerability by using a Lenstra side-channel attack against the targeted device. A successful exploit could allow the attacker to retrieve the RSA private key. The following conditions may be observed on an affected device: This vulnerability will apply to approximately 5 percent of the RSA keys on a device that is running a vulnerable release of Cisco ASA Software or Cisco FTD Software; not all RSA keys are expected to be affected due to mathematical calculations applied to the RSA key. The RSA key could be valid but have specific characteristics that make it vulnerable to the potential leak of the RSA private key. If an attacker obtains the RSA private key, they could use the key to impersonate a device that is running Cisco ASA Software or Cisco FTD Software or to decrypt the device traffic. See the Indicators of Compromise section for more information on the detection of this type of RSA key. The RSA key could be malformed and invalid. A malformed RSA key is not functional, and a TLS client connection to a device that is running Cisco ASA Software or Cisco FTD Software that uses the malformed RSA key will result in a TLS signature failure, which means a vulnerable software release created an invalid RSA signature that failed verification. If an attacker obtains the RSA private key, they could use the key to impersonate a device that is running Cisco ASA Software or Cisco FTD Software or to decrypt the device traffic.
A vulnerability in the remote access SSL VPN features of Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability is due to improper validation of errors that are logged as a result of client connections that are made using remote access VPN. An attacker could exploit this vulnerability by sending crafted requests to an affected system. A successful exploit could allow the attacker to cause the affected device to restart, resulting in a DoS condition.
A vulnerability in CLI of Cisco Firepower Threat Defense (FTD) Software could allow an authenticated, local attacker to inject XML into the command parser. This vulnerability is due to insufficient input validation. An attacker could exploit this vulnerability by including crafted input in commands. A successful exploit could allow the attacker to inject XML into the command parser, which could result in unexpected processing of the command and unexpected command output.
A vulnerability in the Security Intelligence feed feature of Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to bypass the Security Intelligence DNS feed. This vulnerability is due to incorrect feed update processing. An attacker could exploit this vulnerability by sending traffic through an affected device that should be blocked by the affected device. A successful exploit could allow the attacker to bypass device controls and successfully send traffic to devices that are expected to be protected by the affected device.
A vulnerability in an IPsec VPN library of Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to read or modify data within an IPsec IKEv2 VPN tunnel. This vulnerability is due to an improper implementation of Galois/Counter Mode (GCM) ciphers. An attacker in a man-in-the-middle position could exploit this vulnerability by intercepting a sufficient number of encrypted messages across an affected IPsec IKEv2 VPN tunnel and then using cryptanalytic techniques to break the encryption. A successful exploit could allow the attacker to decrypt, read, modify, and re-encrypt data that is transmitted across an affected IPsec IKEv2 VPN tunnel.
A vulnerability in the web services interface for remote access VPN features of Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition. This vulnerability is due to improper input validation when parsing HTTPS requests. An attacker could exploit this vulnerability by sending a crafted HTTPS request to an affected device. A successful exploit could allow the attacker to cause the device to reload, resulting in a DoS condition.