A security regression (CVE-2006-5051) was discovered in OpenSSH's server (sshd). There is a race condition which can lead sshd to handle some signals in an unsafe manner. An unauthenticated, remote attacker may be able to trigger it by failing to authenticate within a set time period.
NFS in a BSD derived codebase, as used in OpenBSD through 7.4 and FreeBSD through 14.0-RELEASE, allows remote attackers to execute arbitrary code via a bug that is unrelated to memory corruption.
`bhyveload -h <host-path>` may be used to grant loader access to the <host-path> directory tree on the host. Affected versions of bhyveload(8) do not make any attempt to restrict loader's access to <host-path>, allowing the loader to read any file the host user has access to. In the bhyveload(8) model, the host supplies a userboot.so to boot with, but the loader scripts generally come from the guest image. A maliciously crafted script could be used to exfiltrate sensitive data from the host accessible to the user running bhyhveload(8), which is often the system root.
The jail(2) system call has not limited a visiblity of allocated TTYs (the kern.ttys sysctl). This gives rise to an information leak about processes outside the current jail.
Attacker can get information about TTYs allocated on the host or in other jails. Effectively, the information printed by "pstat -t" may be leaked.
In versions of FreeBSD 14.0-RELEASE before 14-RELEASE-p2, FreeBSD 13.2-RELEASE before 13.2-RELEASE-p7 and FreeBSD 12.4-RELEASE before 12.4-RELEASE-p9, the pf(4) packet filter incorrectly validates TCP sequence numbers. This could allow a malicious actor to execute a denial-of-service attack against hosts behind the firewall.
When a program running on an affected system appends data to a file via an NFS client mount, the bug can cause the NFS client to fail to copy in the data to be written but proceed as though the copy operation had succeeded. This means that the data to be written is instead replaced with whatever data had been in the packet buffer previously. Thus, an unprivileged user with access to an affected system may abuse the bug to trigger disclosure of sensitive information. In particular, the leak is limited to data previously stored in mbufs, which are used for network transmission and reception, and for certain types of inter-process communication.
The bug can also be triggered unintentionally by system applications, in which case the data written by the application to an NFS mount may be corrupted. Corrupted data is written over the network to the NFS server, and thus also susceptible to being snooped by other hosts on the network.
Note that the bug exists only in the NFS client; the version and implementation of the server has no effect on whether a given system is affected by the problem.
OpenZFS through 2.1.13 and 2.2.x through 2.2.1, in certain scenarios involving applications that try to rely on efficient copying of file data, can replace file contents with zero-valued bytes and thus potentially disable security mechanisms. NOTE: this issue is not always security related, but can be security related in realistic situations. A possible example is cp, from a recent GNU Core Utilities (coreutils) version, when attempting to preserve a rule set for denying unauthorized access. (One might use cp when configuring access control, such as with the /etc/hosts.deny file specified in the IBM Support reference.) NOTE: this issue occurs less often in version 2.2.1, and in versions before 2.1.4, because of the default configuration in those versions.
grub2-bhyve, as used in FreeBSD bhyve before revision 525916 2020-02-12, does not validate the address provided as part of a memrw command (read_* or write_*) by a guest through a grub2.cfg file. This allows an untrusted guest to perform arbitrary read or write operations in the context of the grub-bhyve process, resulting in code execution as root on the host OS.
grub2-bhyve, as used in FreeBSD bhyve before revision 525916 2020-02-12, mishandles font loading by a guest through a grub2.cfg file, leading to a buffer overflow.
Wi-Fi Protected Access (WPA and WPA2) allows reinstallation of the Group Temporal Key (GTK) during the four-way handshake, allowing an attacker within radio range to replay frames from access points to clients.