An attacker can cause a Denial of Service and kernel panic in v4.2 and earlier versions of Espressif esp32 via a malformed beacon csa frame. The device requires a reboot to recover.
Espressif ESP-IDF 2.x, 3.0.x through 3.0.9, 3.1.x through 3.1.7, 3.2.x through 3.2.3, 3.3.x through 3.3.2, and 4.0.x through 4.0.1 has a Buffer Overflow in BluFi provisioning in btc_blufi_recv_handler function in blufi_prf.c. An attacker can send a crafted BluFi protocol Write Attribute command to characteristic 0xFF01. With manipulated packet fields, there is a buffer overflow.
The Bluetooth Low Energy (BLE) controller implementation in Espressif ESP-IDF 4.2 and earlier (for ESP32 devices) does not properly restrict the channel map field of the connection request packet on reception, allowing attackers in radio range to cause a denial of service (crash) via a crafted packet.
The Bluetooth Low Energy (BLE) controller implementation in Espressif ESP-IDF 4.0 through 4.2 (for ESP32 devices) returns the wrong number of completed BLE packets and triggers a reachable assertion on the host stack when receiving a packet with an MIC failure. An attacker within radio range can silently trigger the assertion (which disables the target's BLE stack) by sending a crafted sequence of BLE packets.
An encryption-bypass issue was discovered on Espressif ESP-IDF devices through 4.2, ESP8266_NONOS_SDK devices through 3.0.3, and ESP8266_RTOS_SDK devices through 3.3. Broadcasting forged beacon frames forces a device to change its authentication mode to OPEN, effectively disabling its 802.11 encryption.
An issue was discovered in the Espressif ESP32 mask ROM code 2016-06-08 0 through 2. Lack of anti-glitch mitigations in the first stage bootloader of the ESP32 chip allows an attacker (with physical access to the device) to read the contents of read-protected eFuses, such as flash encryption and secure boot keys, by injecting a glitch into the power supply of the chip shortly after reset.
An issue was discovered in Espressif ESP-IDF 2.x, 3.0.x through 3.0.9, 3.1.x through 3.1.6, 3.2.x through 3.2.3, and 3.3.x through 3.3.1. An attacker who uses fault injection to physically disrupt the ESP32 CPU can bypass the Secure Boot digest verification at startup, and boot unverified code from flash. The fault injection attack does not disable the Flash Encryption feature, so if the ESP32 is configured with the recommended combination of Secure Boot and Flash Encryption, then the impact is minimized. If the ESP32 is configured without Flash Encryption then successful fault injection allows arbitrary code execution. To protect devices with Flash Encryption and Secure Boot enabled against this attack, a firmware change must be made to permanently enable Flash Encryption in the field if it is not already permanently enabled.
The EAP peer implementation in Espressif ESP-IDF 2.0.0 through 4.0.0 and ESP8266_NONOS_SDK 2.2.0 through 3.1.0 processes EAP Success messages before any EAP method completion or failure, which allows attackers in radio range to cause a denial of service (crash) via a crafted message.
The EAP peer implementation in Espressif ESP-IDF 2.0.0 through 4.0.0 and ESP8266_NONOS_SDK 2.2.0 through 3.1.0 allows the installation of a zero Pairwise Master Key (PMK) after the completion of any EAP authentication method, which allows attackers in radio range to replay, decrypt, or spoof frames via a rogue access point.
The client 802.11 mac implementation in Espressif ESP8266_NONOS_SDK 2.2.0 through 3.1.0 does not validate correctly the RSN AuthKey suite list count in beacon frames, probe responses, and association responses, which allows attackers in radio range to cause a denial of service (crash) via a crafted message.