Failure to validate the integer operand in ASP (AMD Secure Processor) bootloader may allow an attacker to introduce an integer overflow in the L2 directory table in SPI flash resulting in a potential denial of service.
Insufficient verification of multiple header signatures while loading a Trusted Application (TA) may allow an attacker with privileges to gain code execution in that TA or the OS/kernel.
Insufficient verification of missing size check in 'LoadModule' may lead to an out-of-bounds write potentially allowing an attacker with privileges to gain code execution of the OS/kernel by loading a malicious TA.
Insufficient memory cleanup in the AMD Secure Processor (ASP) Trusted Execution Environment (TEE) may allow an authenticated attacker with privileges to generate a valid signed TA and potentially poison the contents of the process memory with attacker controlled data resulting in a loss of confidentiality.
Improper parameters handling in the AMD Secure Processor (ASP) kernel may allow a privileged attacker to elevate their privileges potentially leading to loss of integrity.
Improper parameters handling in AMD Secure Processor (ASP) drivers may allow a privileged attacker to elevate their privileges potentially leading to loss of integrity.
Execution unit scheduler contention may lead to a side channel vulnerability found on AMD CPU microarchitectures codenamed “Zen 1”, “Zen 2” and “Zen 3” that use simultaneous multithreading (SMT). By measuring the contention level on scheduler queues an attacker may potentially leak sensitive information.
Improper validation of the BIOS directory may allow for searches to read beyond the directory table copy in RAM, exposing out of bounds memory contents, resulting in a potential denial of service.