A potential vulnerability in some AMD processors using frequency scaling may allow an authenticated attacker to execute a timing attack to potentially enable information disclosure.
Failure to verify the protocol in SMM may allow an attacker to control the protocol and modify SPI flash resulting in a potential arbitrary code execution.
Insufficient check of the process type in Trusted OS (TOS) may allow an attacker with privileges to enable a lesser privileged process to unmap memory owned by a higher privileged process resulting in a denial of service.
A malicious or compromised UApp or ABL may be used by an attacker to issue a malformed system call to the Stage 2 Bootloader potentially leading to corrupt memory and code execution.
A malicious or compromised User Application (UApp) or AGESA Boot Loader (ABL) could be used by an attacker to exfiltrate arbitrary memory from the ASP stage 2 bootloader potentially leading to information disclosure.
A malicious or compromised UApp or ABL may be used by an attacker to issue a malformed system call which results in mapping sensitive System Management Network (SMN) registers leading to a loss of integrity and availability.
An attacker, who gained elevated privileges via some other vulnerability, may be able to read data from Boot ROM resulting in a loss of system integrity.
A malicious or compromised UApp or ABL may be used by an attacker to send a malformed system call to the bootloader, resulting in out-of-bounds memory accesses.
Insufficient bound checks in the System Management Unit (SMU) may result in a system voltage malfunction that could result in denial of resources and/or possibly denial of service.
Improper validation of the BIOS directory may allow for searches to read beyond the directory table copy in RAM, exposing out of bounds memory contents, resulting in a potential denial of service.