There's a flaw in openjpeg in versions prior to 2.4.0 in src/lib/openjp2/pi.c. When an attacker is able to provide crafted input to be processed by the openjpeg encoder, this could cause an out-of-bounds read. The greatest impact from this flaw is to application availability.
jp2/opj_decompress.c in OpenJPEG through 2.3.1 has a use-after-free that can be triggered if there is a mix of valid and invalid files in a directory operated on by the decompressor. Triggering a double-free may also be possible. This is related to calling opj_image_destroy twice.
The color_esycc_to_rgb function in bin/common/color.c in OpenJPEG before 2.1.1 allows attackers to cause a denial of service (memory corruption) via a crafted jpeg 2000 file.
opj_t1_clbl_decode_processor in openjp2/t1.c in OpenJPEG 2.3.1 through 2020-01-28 has a heap-based buffer overflow in the qmfbid==1 case, a different issue than CVE-2020-6851.
OpenJPEG through 2.3.1 has a heap-based buffer overflow in opj_t1_clbl_decode_processor in openjp2/t1.c because of lack of opj_j2k_update_image_dimensions validation.
Out-of-bounds accesses in the functions pi_next_lrcp, pi_next_rlcp, pi_next_rpcl, pi_next_pcrl, pi_next_rpcl, and pi_next_cprl in openmj2/pi.c in OpenJPEG through 2.3.0 allow remote attackers to cause a denial of service (application crash).
An improper computation of p_tx0, p_tx1, p_ty0 and p_ty1 in the function opj_get_encoding_parameters in openjp2/pi.c in OpenJPEG through 2.3.0 can lead to an integer overflow.
In OpenJPEG 2.3.1, there is excessive iteration in the opj_t1_encode_cblks function of openjp2/t1.c. Remote attackers could leverage this vulnerability to cause a denial of service via a crafted bmp file. This issue is similar to CVE-2018-6616.
Division-by-zero vulnerabilities in the functions pi_next_pcrl, pi_next_cprl, and pi_next_rpcl in openmj2/pi.c in OpenJPEG through 2.3.0 allow remote attackers to cause a denial of service (application crash).