A vulnerability in the Cisco Discovery Protocol feature of Cisco FXOS Software and Cisco NX-OS Software could allow an unauthenticated, adjacent attacker to execute arbitrary code with root privileges or cause a denial of service (DoS) condition on an affected device. This vulnerability is due to improper input validation of specific values that are within a Cisco Discovery Protocol message. An attacker could exploit this vulnerability by sending a malicious Cisco Discovery Protocol packet to an affected device. A successful exploit could allow the attacker to execute arbitrary code with root privileges or cause the Cisco Discovery Protocol process to crash and restart multiple times, which would cause the affected device to reload, resulting in a DoS condition. Note: Cisco Discovery Protocol is a Layer 2 protocol. To exploit this vulnerability, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent).
A vulnerability in the Cisco Fabric Services over IP (CFSoIP) feature of Cisco NX-OS Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability is due to insufficient validation of incoming CFSoIP packets. An attacker could exploit this vulnerability by sending crafted CFSoIP packets to an affected device. A successful exploit could allow the attacker to cause the affected device to reload, resulting in a DoS condition.
A vulnerability in the Cisco Discovery Protocol service of Cisco FXOS Software and Cisco NX-OS Software could allow an unauthenticated, adjacent attacker to cause the service to restart, resulting in a denial of service (DoS) condition. This vulnerability is due to improper handling of Cisco Discovery Protocol messages that are processed by the Cisco Discovery Protocol service. An attacker could exploit this vulnerability by sending a series of malicious Cisco Discovery Protocol messages to an affected device. A successful exploit could allow the attacker to cause the Cisco Discovery Protocol service to fail and restart. In rare conditions, repeated failures of the process could occur, which could cause the entire device to restart.
A vulnerability in the Unidirectional Link Detection (UDLD) feature of Cisco FXOS Software, Cisco IOS Software, Cisco IOS XE Software, Cisco IOS XR Software, and Cisco NX-OS Software could allow an unauthenticated, adjacent attacker to cause an affected device to reload. This vulnerability is due to improper input validation of the UDLD packets. An attacker could exploit this vulnerability by sending specifically crafted UDLD packets to an affected device. A successful exploit could allow the attacker to cause the affected device to reload, resulting in a denial of service (DoS) condition. Note: The UDLD feature is disabled by default, and the conditions to exploit this vulnerability are strict. An attacker must have full control of a directly connected device. On Cisco IOS XR devices, the impact is limited to the reload of the UDLD process.
A vulnerability in the EtherChannel port subscription logic of Cisco Nexus 9500 Series Switches could allow an unauthenticated, remote attacker to bypass access control list (ACL) rules that are configured on an affected device. This vulnerability is due to oversubscription of resources that occurs when applying ACLs to port channel interfaces. An attacker could exploit this vulnerability by attempting to access network resources that are protected by the ACL. A successful exploit could allow the attacker to access network resources that would be protected by the ACL that was applied on the port channel interface.
A vulnerability in the Protocol Independent Multicast (PIM) feature of Cisco NX-OS Software could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability is due to insufficient input validation. An attacker could exploit this vulnerability by sending a crafted PIM packet to an affected device. A successful exploit could allow the attacker to cause a traffic loop, resulting in a DoS condition.
A vulnerability in the network stack of Cisco NX-OS Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability exists because the software improperly releases resources when it processes certain IPv6 packets that are destined to an affected device. An attacker could exploit this vulnerability by sending multiple crafted IPv6 packets to an affected device. A successful exploit could cause the network stack to run out of available buffers, impairing operations of control plane and management plane protocols and resulting in a DoS condition. Manual intervention would be required to restore normal operations on the affected device. For more information about the impact of this vulnerability, see the Details section of this advisory.
A vulnerability in the Enable Secret feature of Cisco Nexus 3000 Series Switches and Cisco Nexus 9000 Series Switches in standalone NX-OS mode could allow an authenticated, local attacker to issue the enable command and get full administrative privileges. To exploit this vulnerability, the attacker would need to have valid credentials for the affected device. The vulnerability is due to a logic error in the implementation of the enable command. An attacker could exploit this vulnerability by logging in to the device and issuing the enable command. A successful exploit could allow the attacker to gain full administrative privileges without using the enable password. Note: The Enable Secret feature is disabled by default.
A vulnerability in the Border Gateway Protocol (BGP) Multicast VPN (MVPN) implementation of Cisco NX-OS Software could allow an unauthenticated, remote attacker to cause an affected device to unexpectedly reload, resulting in a denial of service (DoS) condition. The vulnerability is due to incomplete input validation of a specific type of BGP MVPN update message. An attacker could exploit this vulnerability by sending this specific, valid BGP MVPN update message to a targeted device. A successful exploit could allow the attacker to cause one of the BGP-related routing applications to restart multiple times, leading to a system-level restart. Note: The Cisco implementation of BGP accepts incoming BGP traffic from only explicitly configured peers. To exploit this vulnerability, an attacker must send a specific BGP MVPN update message over an established TCP connection that appears to come from a trusted BGP peer. To do so, the attacker must obtain information about the BGP peers in the trusted network of the affected system.
A vulnerability in the Border Gateway Protocol (BGP) Multicast VPN (MVPN) implementation of Cisco NX-OS Software could allow an unauthenticated, remote attacker to cause a BGP session to repeatedly reset, causing a partial denial of service (DoS) condition due to the BGP session being down. The vulnerability is due to incorrect parsing of a specific type of BGP MVPN update message. An attacker could exploit this vulnerability by sending this BGP MVPN update message to a targeted device. A successful exploit could allow the attacker to cause the BGP peer connections to reset, which could lead to BGP route instability and impact traffic. The incoming BGP MVPN update message is valid but is parsed incorrectly by the NX-OS device, which could send a corrupted BGP update to the configured BGP peer. Note: The Cisco implementation of BGP accepts incoming BGP traffic from only explicitly configured peers. To exploit this vulnerability, an attacker must send a specific BGP MVPN update message over an established TCP connection that appears to come from a trusted BGP peer. To do so, the attacker must obtain information about the BGP peers in the trusted network of the affected system.