A vulnerability in the Layer 2 punt code of Cisco IOS XE Software could allow an unauthenticated, adjacent attacker to cause a queue wedge on an interface that receives specific Layer 2 frames, resulting in a denial of service (DoS) condition. This vulnerability is due to improper handling of certain Layer 2 frames. An attacker could exploit this vulnerability by sending specific Layer 2 frames on the segment the router is connected to. A successful exploit could allow the attacker to cause a queue wedge on the interface, resulting in a DoS condition.
Multiple Cisco products are affected by a vulnerability in the Snort detection engine that could allow an unauthenticated, remote attacker to bypass a configured file policy for HTTP. The vulnerability is due to incorrect handling of specific HTTP header parameters. An attacker could exploit this vulnerability by sending crafted HTTP packets through an affected device. A successful exploit could allow the attacker to bypass a configured file policy for HTTP packets and deliver a malicious payload.
Multiple vulnerabilities in the Login Enhancements (Login Block) feature of Cisco IOS Software could allow an unauthenticated, remote attacker to trigger a reload of an affected system, resulting in a denial of service (DoS) condition. These vulnerabilities affect Cisco devices that are running Cisco IOS Software Release 15.4(2)T, 15.4(3)M, or 15.4(2)CG and later. Cisco Bug IDs: CSCuy32360, CSCuz60599.
Multiple vulnerabilities in the Login Enhancements (Login Block) feature of Cisco IOS Software could allow an unauthenticated, remote attacker to trigger a reload of an affected system, resulting in a denial of service (DoS) condition. These vulnerabilities affect Cisco devices that are running Cisco IOS Software Release 15.4(2)T, 15.4(3)M, or 15.4(2)CG and later. Cisco Bug IDs: CSCuy32360, CSCuz60599.
A vulnerability in the crypto engine of the Cisco Integrated Services Module for VPN (ISM-VPN) running Cisco IOS Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. The vulnerability is due to insufficient handling of VPN traffic by the affected device. An attacker could exploit this vulnerability by sending crafted VPN traffic to an affected device. A successful exploit could allow the attacker to cause the affected device to hang or crash, resulting in a DoS condition. Cisco Bug IDs: CSCvd39267.
A vulnerability in the Border Gateway Protocol (BGP) over an Ethernet Virtual Private Network (EVPN) for Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause the device to reload, resulting in a denial of service (DoS) condition, or potentially corrupt the BGP routing table, which could result in network instability. The vulnerability exists due to changes in the implementation of the BGP MPLS-Based Ethernet VPN RFC (RFC 7432) draft between IOS XE software releases. When the BGP Inclusive Multicast Ethernet Tag Route or BGP EVPN MAC/IP Advertisement Route update packet is received, it could be possible that the IP address length field is miscalculated. An attacker could exploit this vulnerability by sending a crafted BGP packet to an affected device after the BGP session was established. An exploit could allow the attacker to cause the affected device to reload or corrupt the BGP routing table; either outcome would result in a DoS. The vulnerability may be triggered when the router receives a crafted BGP message from a peer on an existing BGP session. This vulnerability affects all releases of Cisco IOS XE Software prior to software release 16.3 that support BGP EVPN configurations. If the device is not configured for EVPN, it is not vulnerable. Cisco Bug IDs: CSCui67191, CSCvg52875.
A vulnerability in the implementation of Network Address Translation (NAT) functionality in Cisco IOS 12.4 through 15.6 could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. The vulnerability is due to the improper translation of H.323 messages that use the Registration, Admission, and Status (RAS) protocol and are sent to an affected device via IPv4 packets. An attacker could exploit this vulnerability by sending a crafted H.323 RAS packet through an affected device. A successful exploit could allow the attacker to cause the affected device to crash and reload, resulting in a DoS condition. This vulnerability affects Cisco devices that are configured to use an application layer gateway with NAT (NAT ALG) for H.323 RAS messages. By default, a NAT ALG is enabled for H.323 RAS messages. Cisco Bug IDs: CSCvc57217.
A vulnerability in the implementation of a protocol in Cisco Integrated Services Routers Generation 2 (ISR G2) Routers running Cisco IOS 15.0 through 15.6 could allow an unauthenticated, adjacent attacker to cause an affected device to reload, resulting in a denial of service (DoS) condition. The vulnerability is due to a misclassification of Ethernet frames. An attacker could exploit this vulnerability by sending a crafted Ethernet frame to an affected device. A successful exploit could allow the attacker to cause the affected device to reload, resulting in a DoS condition. Cisco Bug IDs: CSCvc03809.
Multiple vulnerabilities in the implementation of the Common Industrial Protocol (CIP) feature in Cisco IOS 12.4 through 15.6 could allow an unauthenticated, remote attacker to cause an affected device to reload, resulting in a denial of service (DoS) condition. The vulnerabilities are due to the improper parsing of crafted CIP packets destined to an affected device. An attacker could exploit these vulnerabilities by sending crafted CIP packets to be processed by an affected device. A successful exploit could allow the attacker to cause the affected device to reload, resulting in a DoS condition. Cisco Bug IDs: CSCuz95334.
Multiple vulnerabilities in the implementation of the Common Industrial Protocol (CIP) feature in Cisco IOS 12.4 through 15.6 could allow an unauthenticated, remote attacker to cause an affected device to reload, resulting in a denial of service (DoS) condition. The vulnerabilities are due to the improper parsing of crafted CIP packets destined to an affected device. An attacker could exploit these vulnerabilities by sending crafted CIP packets to be processed by an affected device. A successful exploit could allow the attacker to cause the affected device to reload, resulting in a DoS condition. Cisco Bug IDs: CSCvc43709.