In the Linux kernel, the following vulnerability has been resolved:
riscv: save the SR_SUM status over switches
When threads/tasks are switched we need to ensure the old execution's
SR_SUM state is saved and the new thread has the old SR_SUM state
restored.
The issue was seen under heavy load especially with the syz-stress tool
running, with crashes as follows in schedule_tail:
Unable to handle kernel access to user memory without uaccess routines
at virtual address 000000002749f0d0
Oops [#1]
Modules linked in:
CPU: 1 PID: 4875 Comm: syz-executor.0 Not tainted
5.12.0-rc2-syzkaller-00467-g0d7588ab9ef9 #0
Hardware name: riscv-virtio,qemu (DT)
epc : schedule_tail+0x72/0xb2 kernel/sched/core.c:4264
ra : task_pid_vnr include/linux/sched.h:1421 [inline]
ra : schedule_tail+0x70/0xb2 kernel/sched/core.c:4264
epc : ffffffe00008c8b0 ra : ffffffe00008c8ae sp : ffffffe025d17ec0
gp : ffffffe005d25378 tp : ffffffe00f0d0000 t0 : 0000000000000000
t1 : 0000000000000001 t2 : 00000000000f4240 s0 : ffffffe025d17ee0
s1 : 000000002749f0d0 a0 : 000000000000002a a1 : 0000000000000003
a2 : 1ffffffc0cfac500 a3 : ffffffe0000c80cc a4 : 5ae9db91c19bbe00
a5 : 0000000000000000 a6 : 0000000000f00000 a7 : ffffffe000082eba
s2 : 0000000000040000 s3 : ffffffe00eef96c0 s4 : ffffffe022c77fe0
s5 : 0000000000004000 s6 : ffffffe067d74e00 s7 : ffffffe067d74850
s8 : ffffffe067d73e18 s9 : ffffffe067d74e00 s10: ffffffe00eef96e8
s11: 000000ae6cdf8368 t3 : 5ae9db91c19bbe00 t4 : ffffffc4043cafb2
t5 : ffffffc4043cafba t6 : 0000000000040000
status: 0000000000000120 badaddr: 000000002749f0d0 cause:
000000000000000f
Call Trace:
[<ffffffe00008c8b0>] schedule_tail+0x72/0xb2 kernel/sched/core.c:4264
[<ffffffe000005570>] ret_from_exception+0x0/0x14
Dumping ftrace buffer:
(ftrace buffer empty)
---[ end trace b5f8f9231dc87dda ]---
The issue comes from the put_user() in schedule_tail
(kernel/sched/core.c) doing the following:
asmlinkage __visible void schedule_tail(struct task_struct *prev)
{
...
if (current->set_child_tid)
put_user(task_pid_vnr(current), current->set_child_tid);
...
}
the put_user() macro causes the code sequence to come out as follows:
1: __enable_user_access()
2: reg = task_pid_vnr(current);
3: *current->set_child_tid = reg;
4: __disable_user_access()
The problem is that we may have a sleeping function as argument which
could clear SR_SUM causing the panic above. This was fixed by
evaluating the argument of the put_user() macro outside the user-enabled
section in commit 285a76bb2cf5 ("riscv: evaluate put_user() arg before
enabling user access")"
In order for riscv to take advantage of unsafe_get/put_XXX() macros and
to avoid the same issue we had with put_user() and sleeping functions we
must ensure code flow can go through switch_to() from within a region of
code with SR_SUM enabled and come back with SR_SUM still enabled. This
patch addresses the problem allowing future work to enable full use of
unsafe_get/put_XXX() macros without needing to take a CSR bit flip cost
on every access. Make switch_to() save and restore SR_SUM.
In the Linux kernel, the following vulnerability has been resolved:
tty: serial: uartlite: register uart driver in init
When two instances of uart devices are probing, a concurrency race can
occur. If one thread calls uart_register_driver function, which first
allocates and assigns memory to 'uart_state' member of uart_driver
structure, the other instance can bypass uart driver registration and
call ulite_assign. This calls uart_add_one_port, which expects the uart
driver to be fully initialized. This leads to a kernel panic due to a
null pointer dereference:
[ 8.143581] BUG: kernel NULL pointer dereference, address: 00000000000002b8
[ 8.156982] #PF: supervisor write access in kernel mode
[ 8.156984] #PF: error_code(0x0002) - not-present page
[ 8.156986] PGD 0 P4D 0
...
[ 8.180668] RIP: 0010:mutex_lock+0x19/0x30
[ 8.188624] Call Trace:
[ 8.188629] ? __die_body.cold+0x1a/0x1f
[ 8.195260] ? page_fault_oops+0x15c/0x290
[ 8.209183] ? __irq_resolve_mapping+0x47/0x80
[ 8.209187] ? exc_page_fault+0x64/0x140
[ 8.209190] ? asm_exc_page_fault+0x22/0x30
[ 8.209196] ? mutex_lock+0x19/0x30
[ 8.223116] uart_add_one_port+0x60/0x440
[ 8.223122] ? proc_tty_register_driver+0x43/0x50
[ 8.223126] ? tty_register_driver+0x1ca/0x1e0
[ 8.246250] ulite_probe+0x357/0x4b0 [uartlite]
To prevent it, move uart driver registration in to init function. This
will ensure that uart_driver is always registered when probe function
is called.
In the Linux kernel, the following vulnerability has been resolved:
nvme-tcp: sanitize request list handling
Validate the request in nvme_tcp_handle_r2t() to ensure it's not part of
any list, otherwise a malicious R2T PDU might inject a loop in request
list processing.
In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Fix out-of-bounds read in snd_usb_get_audioformat_uac3()
In snd_usb_get_audioformat_uac3(), the length value returned from
snd_usb_ctl_msg() is used directly for memory allocation without
validation. This length is controlled by the USB device.
The allocated buffer is cast to a uac3_cluster_header_descriptor
and its fields are accessed without verifying that the buffer
is large enough. If the device returns a smaller than expected
length, this leads to an out-of-bounds read.
Add a length check to ensure the buffer is large enough for
uac3_cluster_header_descriptor.
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_core: Fix use-after-free in vhci_flush()
syzbot reported use-after-free in vhci_flush() without repro. [0]
From the splat, a thread close()d a vhci file descriptor while
its device was being used by iotcl() on another thread.
Once the last fd refcnt is released, vhci_release() calls
hci_unregister_dev(), hci_free_dev(), and kfree() for struct
vhci_data, which is set to hci_dev->dev->driver_data.
The problem is that there is no synchronisation after unlinking
hdev from hci_dev_list in hci_unregister_dev(). There might be
another thread still accessing the hdev which was fetched before
the unlink operation.
We can use SRCU for such synchronisation.
Let's run hci_dev_reset() under SRCU and wait for its completion
in hci_unregister_dev().
Another option would be to restore hci_dev->destruct(), which was
removed in commit 587ae086f6e4 ("Bluetooth: Remove unused
hci-destruct cb"). However, this would not be a good solution, as
we should not run hci_unregister_dev() while there are in-flight
ioctl() requests, which could lead to another data-race KCSAN splat.
Note that other drivers seem to have the same problem, for exmaple,
virtbt_remove().
[0]:
BUG: KASAN: slab-use-after-free in skb_queue_empty_lockless include/linux/skbuff.h:1891 [inline]
BUG: KASAN: slab-use-after-free in skb_queue_purge_reason+0x99/0x360 net/core/skbuff.c:3937
Read of size 8 at addr ffff88807cb8d858 by task syz.1.219/6718
CPU: 1 UID: 0 PID: 6718 Comm: syz.1.219 Not tainted 6.16.0-rc1-syzkaller-00196-g08207f42d3ff #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/07/2025
Call Trace:
<TASK>
dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:408 [inline]
print_report+0xd2/0x2b0 mm/kasan/report.c:521
kasan_report+0x118/0x150 mm/kasan/report.c:634
skb_queue_empty_lockless include/linux/skbuff.h:1891 [inline]
skb_queue_purge_reason+0x99/0x360 net/core/skbuff.c:3937
skb_queue_purge include/linux/skbuff.h:3368 [inline]
vhci_flush+0x44/0x50 drivers/bluetooth/hci_vhci.c:69
hci_dev_do_reset net/bluetooth/hci_core.c:552 [inline]
hci_dev_reset+0x420/0x5c0 net/bluetooth/hci_core.c:592
sock_do_ioctl+0xd9/0x300 net/socket.c:1190
sock_ioctl+0x576/0x790 net/socket.c:1311
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl+0xf9/0x170 fs/ioctl.c:893
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fcf5b98e929
Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007fcf5c7b9038 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007fcf5bbb6160 RCX: 00007fcf5b98e929
RDX: 0000000000000000 RSI: 00000000400448cb RDI: 0000000000000009
RBP: 00007fcf5ba10b39 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 0000000000000000 R14: 00007fcf5bbb6160 R15: 00007ffd6353d528
</TASK>
Allocated by task 6535:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
__kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:394
kasan_kmalloc include/linux/kasan.h:260 [inline]
__kmalloc_cache_noprof+0x230/0x3d0 mm/slub.c:4359
kmalloc_noprof include/linux/slab.h:905 [inline]
kzalloc_noprof include/linux/slab.h:1039 [inline]
vhci_open+0x57/0x360 drivers/bluetooth/hci_vhci.c:635
misc_open+0x2bc/0x330 drivers/char/misc.c:161
chrdev_open+0x4c9/0x5e0 fs/char_dev.c:414
do_dentry_open+0xdf0/0x1970 fs/open.c:964
vfs_open+0x3b/0x340 fs/open.c:1094
do_open fs/namei.c:3887 [inline]
path_openat+0x2ee5/0x3830 fs/name
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
atm: clip: prevent NULL deref in clip_push()
Blamed commit missed that vcc_destroy_socket() calls
clip_push() with a NULL skb.
If clip_devs is NULL, clip_push() then crashes when reading
skb->truesize.
In the Linux kernel, the following vulnerability has been resolved:
lib/group_cpus: fix NULL pointer dereference from group_cpus_evenly()
While testing null_blk with configfs, echo 0 > poll_queues will trigger
following panic:
BUG: kernel NULL pointer dereference, address: 0000000000000010
Oops: Oops: 0000 [#1] SMP NOPTI
CPU: 27 UID: 0 PID: 920 Comm: bash Not tainted 6.15.0-02023-gadbdb95c8696-dirty #1238 PREEMPT(undef)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.1-2.fc37 04/01/2014
RIP: 0010:__bitmap_or+0x48/0x70
Call Trace:
<TASK>
__group_cpus_evenly+0x822/0x8c0
group_cpus_evenly+0x2d9/0x490
blk_mq_map_queues+0x1e/0x110
null_map_queues+0xc9/0x170 [null_blk]
blk_mq_update_queue_map+0xdb/0x160
blk_mq_update_nr_hw_queues+0x22b/0x560
nullb_update_nr_hw_queues+0x71/0xf0 [null_blk]
nullb_device_poll_queues_store+0xa4/0x130 [null_blk]
configfs_write_iter+0x109/0x1d0
vfs_write+0x26e/0x6f0
ksys_write+0x79/0x180
__x64_sys_write+0x1d/0x30
x64_sys_call+0x45c4/0x45f0
do_syscall_64+0xa5/0x240
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Root cause is that numgrps is set to 0, and ZERO_SIZE_PTR is returned from
kcalloc(), and later ZERO_SIZE_PTR will be deferenced.
Fix the problem by checking numgrps first in group_cpus_evenly(), and
return NULL directly if numgrps is zero.
[yukuai3@huawei.com: also fix the non-SMP version]
In the Linux kernel, the following vulnerability has been resolved:
s390/pkey: Prevent overflow in size calculation for memdup_user()
Number of apqn target list entries contained in 'nr_apqns' variable is
determined by userspace via an ioctl call so the result of the product in
calculation of size passed to memdup_user() may overflow.
In this case the actual size of the allocated area and the value
describing it won't be in sync leading to various types of unpredictable
behaviour later.
Use a proper memdup_array_user() helper which returns an error if an
overflow is detected. Note that it is different from when nr_apqns is
initially zero - that case is considered valid and should be handled in
subsequent pkey_handler implementations.
Found by Linux Verification Center (linuxtesting.org).
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential deadlock when reconnecting channels
Fix cifs_signal_cifsd_for_reconnect() to take the correct lock order
and prevent the following deadlock from happening
======================================================
WARNING: possible circular locking dependency detected
6.16.0-rc3-build2+ #1301 Tainted: G S W
------------------------------------------------------
cifsd/6055 is trying to acquire lock:
ffff88810ad56038 (&tcp_ses->srv_lock){+.+.}-{3:3}, at: cifs_signal_cifsd_for_reconnect+0x134/0x200
but task is already holding lock:
ffff888119c64330 (&ret_buf->chan_lock){+.+.}-{3:3}, at: cifs_signal_cifsd_for_reconnect+0xcf/0x200
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #2 (&ret_buf->chan_lock){+.+.}-{3:3}:
validate_chain+0x1cf/0x270
__lock_acquire+0x60e/0x780
lock_acquire.part.0+0xb4/0x1f0
_raw_spin_lock+0x2f/0x40
cifs_setup_session+0x81/0x4b0
cifs_get_smb_ses+0x771/0x900
cifs_mount_get_session+0x7e/0x170
cifs_mount+0x92/0x2d0
cifs_smb3_do_mount+0x161/0x460
smb3_get_tree+0x55/0x90
vfs_get_tree+0x46/0x180
do_new_mount+0x1b0/0x2e0
path_mount+0x6ee/0x740
do_mount+0x98/0xe0
__do_sys_mount+0x148/0x180
do_syscall_64+0xa4/0x260
entry_SYSCALL_64_after_hwframe+0x76/0x7e
-> #1 (&ret_buf->ses_lock){+.+.}-{3:3}:
validate_chain+0x1cf/0x270
__lock_acquire+0x60e/0x780
lock_acquire.part.0+0xb4/0x1f0
_raw_spin_lock+0x2f/0x40
cifs_match_super+0x101/0x320
sget+0xab/0x270
cifs_smb3_do_mount+0x1e0/0x460
smb3_get_tree+0x55/0x90
vfs_get_tree+0x46/0x180
do_new_mount+0x1b0/0x2e0
path_mount+0x6ee/0x740
do_mount+0x98/0xe0
__do_sys_mount+0x148/0x180
do_syscall_64+0xa4/0x260
entry_SYSCALL_64_after_hwframe+0x76/0x7e
-> #0 (&tcp_ses->srv_lock){+.+.}-{3:3}:
check_noncircular+0x95/0xc0
check_prev_add+0x115/0x2f0
validate_chain+0x1cf/0x270
__lock_acquire+0x60e/0x780
lock_acquire.part.0+0xb4/0x1f0
_raw_spin_lock+0x2f/0x40
cifs_signal_cifsd_for_reconnect+0x134/0x200
__cifs_reconnect+0x8f/0x500
cifs_handle_standard+0x112/0x280
cifs_demultiplex_thread+0x64d/0xbc0
kthread+0x2f7/0x310
ret_from_fork+0x2a/0x230
ret_from_fork_asm+0x1a/0x30
other info that might help us debug this:
Chain exists of:
&tcp_ses->srv_lock --> &ret_buf->ses_lock --> &ret_buf->chan_lock
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&ret_buf->chan_lock);
lock(&ret_buf->ses_lock);
lock(&ret_buf->chan_lock);
lock(&tcp_ses->srv_lock);
*** DEADLOCK ***
3 locks held by cifsd/6055:
#0: ffffffff857de398 (&cifs_tcp_ses_lock){+.+.}-{3:3}, at: cifs_signal_cifsd_for_reconnect+0x7b/0x200
#1: ffff888119c64060 (&ret_buf->ses_lock){+.+.}-{3:3}, at: cifs_signal_cifsd_for_reconnect+0x9c/0x200
#2: ffff888119c64330 (&ret_buf->chan_lock){+.+.}-{3:3}, at: cifs_signal_cifsd_for_reconnect+0xcf/0x200