In the Linux kernel, the following vulnerability has been resolved:
PNP: fix name memory leak in pnp_alloc_dev()
After commit 1fa5ae857bb1 ("driver core: get rid of struct device's
bus_id string array"), the name of device is allocated dynamically,
move dev_set_name() after pnp_add_id() to avoid memory leak.
In the Linux kernel, the following vulnerability has been resolved:
wifi: rtlwifi: Fix global-out-of-bounds bug in _rtl8812ae_phy_set_txpower_limit()
There is a global-out-of-bounds reported by KASAN:
BUG: KASAN: global-out-of-bounds in
_rtl8812ae_eq_n_byte.part.0+0x3d/0x84 [rtl8821ae]
Read of size 1 at addr ffffffffa0773c43 by task NetworkManager/411
CPU: 6 PID: 411 Comm: NetworkManager Tainted: G D
6.1.0-rc8+ #144 e15588508517267d37
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009),
Call Trace:
<TASK>
...
kasan_report+0xbb/0x1c0
_rtl8812ae_eq_n_byte.part.0+0x3d/0x84 [rtl8821ae]
rtl8821ae_phy_bb_config.cold+0x346/0x641 [rtl8821ae]
rtl8821ae_hw_init+0x1f5e/0x79b0 [rtl8821ae]
...
</TASK>
The root cause of the problem is that the comparison order of
"prate_section" in _rtl8812ae_phy_set_txpower_limit() is wrong. The
_rtl8812ae_eq_n_byte() is used to compare the first n bytes of the two
strings from tail to head, which causes the problem. In the
_rtl8812ae_phy_set_txpower_limit(), it was originally intended to meet
this requirement by carefully designing the comparison order.
For example, "pregulation" and "pbandwidth" are compared in order of
length from small to large, first is 3 and last is 4. However, the
comparison order of "prate_section" dose not obey such order requirement,
therefore when "prate_section" is "HT", when comparing from tail to head,
it will lead to access out of bounds in _rtl8812ae_eq_n_byte(). As
mentioned above, the _rtl8812ae_eq_n_byte() has the same function as
strcmp(), so just strcmp() is enough.
Fix it by removing _rtl8812ae_eq_n_byte() and use strcmp() barely.
Although it can be fixed by adjusting the comparison order of
"prate_section", this may cause the value of "rate_section" to not be
from 0 to 5. In addition, commit "21e4b0726dc6" not only moved driver
from staging to regular tree, but also added setting txpower limit
function during the driver config phase, so the problem was introduced
by this commit.
In the Linux kernel, the following vulnerability has been resolved:
mmc: rtsx_pci: fix return value check of mmc_add_host()
mmc_add_host() may return error, if we ignore its return value, the memory
that allocated in mmc_alloc_host() will be leaked and it will lead a kernel
crash because of deleting not added device in the remove path.
So fix this by checking the return value and calling mmc_free_host() in the
error path, beside, runtime PM also needs be disabled.
In the Linux kernel, the following vulnerability has been resolved:
mmc: moxart: fix return value check of mmc_add_host()
mmc_add_host() may return error, if we ignore its return value, the memory
that allocated in mmc_alloc_host() will be leaked and it will lead a kernel
crash because of deleting not added device in the remove path.
So fix this by checking the return value and goto error path which will call
mmc_free_host().
In the Linux kernel, the following vulnerability has been resolved:
USB: uhci: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
In the Linux kernel, the following vulnerability has been resolved:
ipv6/addrconf: fix a potential refcount underflow for idev
Now in addrconf_mod_rs_timer(), reference idev depends on whether
rs_timer is not pending. Then modify rs_timer timeout.
There is a time gap in [1], during which if the pending rs_timer
becomes not pending. It will miss to hold idev, but the rs_timer
is activated. Thus rs_timer callback function addrconf_rs_timer()
will be executed and put idev later without holding idev. A refcount
underflow issue for idev can be caused by this.
if (!timer_pending(&idev->rs_timer))
in6_dev_hold(idev);
<--------------[1]
mod_timer(&idev->rs_timer, jiffies + when);
To fix the issue, hold idev if mod_timer() return 0.
In the Linux kernel, the following vulnerability has been resolved:
ACPICA: Avoid undefined behavior: applying zero offset to null pointer
ACPICA commit 770653e3ba67c30a629ca7d12e352d83c2541b1e
Before this change we see the following UBSAN stack trace in Fuchsia:
#0 0x000021e4213b3302 in acpi_ds_init_aml_walk(struct acpi_walk_state*, union acpi_parse_object*, struct acpi_namespace_node*, u8*, u32, struct acpi_evaluate_info*, u8) ../../third_party/acpica/source/components/dispatcher/dswstate.c:682 <platform-bus-x86.so>+0x233302
#1.2 0x000020d0f660777f in ubsan_get_stack_trace() compiler-rt/lib/ubsan/ubsan_diag.cpp:41 <libclang_rt.asan.so>+0x3d77f
#1.1 0x000020d0f660777f in maybe_print_stack_trace() compiler-rt/lib/ubsan/ubsan_diag.cpp:51 <libclang_rt.asan.so>+0x3d77f
#1 0x000020d0f660777f in ~scoped_report() compiler-rt/lib/ubsan/ubsan_diag.cpp:387 <libclang_rt.asan.so>+0x3d77f
#2 0x000020d0f660b96d in handlepointer_overflow_impl() compiler-rt/lib/ubsan/ubsan_handlers.cpp:809 <libclang_rt.asan.so>+0x4196d
#3 0x000020d0f660b50d in compiler-rt/lib/ubsan/ubsan_handlers.cpp:815 <libclang_rt.asan.so>+0x4150d
#4 0x000021e4213b3302 in acpi_ds_init_aml_walk(struct acpi_walk_state*, union acpi_parse_object*, struct acpi_namespace_node*, u8*, u32, struct acpi_evaluate_info*, u8) ../../third_party/acpica/source/components/dispatcher/dswstate.c:682 <platform-bus-x86.so>+0x233302
#5 0x000021e4213e2369 in acpi_ds_call_control_method(struct acpi_thread_state*, struct acpi_walk_state*, union acpi_parse_object*) ../../third_party/acpica/source/components/dispatcher/dsmethod.c:605 <platform-bus-x86.so>+0x262369
#6 0x000021e421437fac in acpi_ps_parse_aml(struct acpi_walk_state*) ../../third_party/acpica/source/components/parser/psparse.c:550 <platform-bus-x86.so>+0x2b7fac
#7 0x000021e4214464d2 in acpi_ps_execute_method(struct acpi_evaluate_info*) ../../third_party/acpica/source/components/parser/psxface.c:244 <platform-bus-x86.so>+0x2c64d2
#8 0x000021e4213aa052 in acpi_ns_evaluate(struct acpi_evaluate_info*) ../../third_party/acpica/source/components/namespace/nseval.c:250 <platform-bus-x86.so>+0x22a052
#9 0x000021e421413dd8 in acpi_ns_init_one_device(acpi_handle, u32, void*, void**) ../../third_party/acpica/source/components/namespace/nsinit.c:735 <platform-bus-x86.so>+0x293dd8
#10 0x000021e421429e98 in acpi_ns_walk_namespace(acpi_object_type, acpi_handle, u32, u32, acpi_walk_callback, acpi_walk_callback, void*, void**) ../../third_party/acpica/source/components/namespace/nswalk.c:298 <platform-bus-x86.so>+0x2a9e98
#11 0x000021e4214131ac in acpi_ns_initialize_devices(u32) ../../third_party/acpica/source/components/namespace/nsinit.c:268 <platform-bus-x86.so>+0x2931ac
#12 0x000021e42147c40d in acpi_initialize_objects(u32) ../../third_party/acpica/source/components/utilities/utxfinit.c:304 <platform-bus-x86.so>+0x2fc40d
#13 0x000021e42126d603 in acpi::acpi_impl::initialize_acpi(acpi::acpi_impl*) ../../src/devices/board/lib/acpi/acpi-impl.cc:224 <platform-bus-x86.so>+0xed603
Add a simple check that avoids incrementing a pointer by zero, but
otherwise behaves as before. Note that our findings are against ACPICA
20221020, but the same code exists on master.
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k: don't allow to overwrite ENDPOINT0 attributes
A bad USB device is able to construct a service connection response
message with target endpoint being ENDPOINT0 which is reserved for
HTC_CTRL_RSVD_SVC and should not be modified to be used for any other
services.
Reject such service connection responses.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
In the Linux kernel, the following vulnerability has been resolved:
tty: pcn_uart: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
In the Linux kernel, the following vulnerability has been resolved:
scsi: core: Fix possible memory leak if device_add() fails
If device_add() returns error, the name allocated by dev_set_name() needs
be freed. As the comment of device_add() says, put_device() should be used
to decrease the reference count in the error path. So fix this by calling
put_device(), then the name can be freed in kobject_cleanp().