Vulnerabilities
Vulnerable Software
Linux:  >> Linux Kernel  >> 3.12.47  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: btrfs: abort transaction on unexpected eb generation at btrfs_copy_root() If we find an unexpected generation for the extent buffer we are cloning at btrfs_copy_root(), we just WARN_ON() and don't error out and abort the transaction, meaning we allow to persist metadata with an unexpected generation. Instead of warning only, abort the transaction and return -EUCLEAN.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-15
In the Linux kernel, the following vulnerability has been resolved: xfrm: Duplicate SPI Handling The issue originates when Strongswan initiates an XFRM_MSG_ALLOCSPI Netlink message, which triggers the kernel function xfrm_alloc_spi(). This function is expected to ensure uniqueness of the Security Parameter Index (SPI) for inbound Security Associations (SAs). However, it can return success even when the requested SPI is already in use, leading to duplicate SPIs assigned to multiple inbound SAs, differentiated only by their destination addresses. This behavior causes inconsistencies during SPI lookups for inbound packets. Since the lookup may return an arbitrary SA among those with the same SPI, packet processing can fail, resulting in packet drops. According to RFC 4301 section 4.4.2 , for inbound processing a unicast SA is uniquely identified by the SPI and optionally protocol. Reproducing the Issue Reliably: To consistently reproduce the problem, restrict the available SPI range in charon.conf : spi_min = 0x10000000 spi_max = 0x10000002 This limits the system to only 2 usable SPI values. Next, create more than 2 Child SA. each using unique pair of src/dst address. As soon as the 3rd Child SA is initiated, it will be assigned a duplicate SPI, since the SPI pool is already exhausted. With a narrow SPI range, the issue is consistently reproducible. With a broader/default range, it becomes rare and unpredictable. Current implementation: xfrm_spi_hash() lookup function computes hash using daddr, proto, and family. So if two SAs have the same SPI but different destination addresses, then they will: a. Hash into different buckets b. Be stored in different linked lists (byspi + h) c. Not be seen in the same hlist_for_each_entry_rcu() iteration. As a result, the lookup will result in NULL and kernel allows that Duplicate SPI Proposed Change: xfrm_state_lookup_spi_proto() does a truly global search - across all states, regardless of hash bucket and matches SPI and proto.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-09-12
In the Linux kernel, the following vulnerability has been resolved: NFS: Fix the setting of capabilities when automounting a new filesystem Capabilities cannot be inherited when we cross into a new filesystem. They need to be reset to the minimal defaults, and then probed for again.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-12
In the Linux kernel, the following vulnerability has been resolved: parisc: Drop WARN_ON_ONCE() from flush_cache_vmap I have observed warning to occassionally trigger.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-11
In the Linux kernel, the following vulnerability has been resolved: jbd2: prevent softlockup in jbd2_log_do_checkpoint() Both jbd2_log_do_checkpoint() and jbd2_journal_shrink_checkpoint_list() periodically release j_list_lock after processing a batch of buffers to avoid long hold times on the j_list_lock. However, since both functions contend for j_list_lock, the combined time spent waiting and processing can be significant. jbd2_journal_shrink_checkpoint_list() explicitly calls cond_resched() when need_resched() is true to avoid softlockups during prolonged operations. But jbd2_log_do_checkpoint() only exits its loop when need_resched() is true, relying on potentially sleeping functions like __flush_batch() or wait_on_buffer() to trigger rescheduling. If those functions do not sleep, the kernel may hit a softlockup. watchdog: BUG: soft lockup - CPU#3 stuck for 156s! [kworker/u129:2:373] CPU: 3 PID: 373 Comm: kworker/u129:2 Kdump: loaded Not tainted 6.6.0+ #10 Hardware name: Huawei TaiShan 2280 /BC11SPCD, BIOS 1.27 06/13/2017 Workqueue: writeback wb_workfn (flush-7:2) pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : native_queued_spin_lock_slowpath+0x358/0x418 lr : jbd2_log_do_checkpoint+0x31c/0x438 [jbd2] Call trace: native_queued_spin_lock_slowpath+0x358/0x418 jbd2_log_do_checkpoint+0x31c/0x438 [jbd2] __jbd2_log_wait_for_space+0xfc/0x2f8 [jbd2] add_transaction_credits+0x3bc/0x418 [jbd2] start_this_handle+0xf8/0x560 [jbd2] jbd2__journal_start+0x118/0x228 [jbd2] __ext4_journal_start_sb+0x110/0x188 [ext4] ext4_do_writepages+0x3dc/0x740 [ext4] ext4_writepages+0xa4/0x190 [ext4] do_writepages+0x94/0x228 __writeback_single_inode+0x48/0x318 writeback_sb_inodes+0x204/0x590 __writeback_inodes_wb+0x54/0xf8 wb_writeback+0x2cc/0x3d8 wb_do_writeback+0x2e0/0x2f8 wb_workfn+0x80/0x2a8 process_one_work+0x178/0x3e8 worker_thread+0x234/0x3b8 kthread+0xf0/0x108 ret_from_fork+0x10/0x20 So explicitly call cond_resched() in jbd2_log_do_checkpoint() to avoid softlockup.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-11
In the Linux kernel, the following vulnerability has been resolved: net: bridge: fix soft lockup in br_multicast_query_expired() When set multicast_query_interval to a large value, the local variable 'time' in br_multicast_send_query() may overflow. If the time is smaller than jiffies, the timer will expire immediately, and then call mod_timer() again, which creates a loop and may trigger the following soft lockup issue. watchdog: BUG: soft lockup - CPU#1 stuck for 221s! [rb_consumer:66] CPU: 1 UID: 0 PID: 66 Comm: rb_consumer Not tainted 6.16.0+ #259 PREEMPT(none) Call Trace: <IRQ> __netdev_alloc_skb+0x2e/0x3a0 br_ip6_multicast_alloc_query+0x212/0x1b70 __br_multicast_send_query+0x376/0xac0 br_multicast_send_query+0x299/0x510 br_multicast_query_expired.constprop.0+0x16d/0x1b0 call_timer_fn+0x3b/0x2a0 __run_timers+0x619/0x950 run_timer_softirq+0x11c/0x220 handle_softirqs+0x18e/0x560 __irq_exit_rcu+0x158/0x1a0 sysvec_apic_timer_interrupt+0x76/0x90 </IRQ> This issue can be reproduced with: ip link add br0 type bridge echo 1 > /sys/class/net/br0/bridge/multicast_querier echo 0xffffffffffffffff > /sys/class/net/br0/bridge/multicast_query_interval ip link set dev br0 up The multicast_startup_query_interval can also cause this issue. Similar to the commit 99b40610956a ("net: bridge: mcast: add and enforce query interval minimum"), add check for the query interval maximum to fix this issue.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-11
In the Linux kernel, the following vulnerability has been resolved: ACPI: APEI: send SIGBUS to current task if synchronous memory error not recovered If a synchronous error is detected as a result of user-space process triggering a 2-bit uncorrected error, the CPU will take a synchronous error exception such as Synchronous External Abort (SEA) on Arm64. The kernel will queue a memory_failure() work which poisons the related page, unmaps the page, and then sends a SIGBUS to the process, so that a system wide panic can be avoided. However, no memory_failure() work will be queued when abnormal synchronous errors occur. These errors can include situations like invalid PA, unexpected severity, no memory failure config support, invalid GUID section, etc. In such a case, the user-space process will trigger SEA again. This loop can potentially exceed the platform firmware threshold or even trigger a kernel hard lockup, leading to a system reboot. Fix it by performing a force kill if no memory_failure() work is queued for synchronous errors. [ rjw: Changelog edits ]
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-11
In the Linux kernel, the following vulnerability has been resolved: netfilter: ctnetlink: remove refcounting in expectation dumpers Same pattern as previous patch: do not keep the expectation object alive via refcount, only store a cookie value and then use that as the skip hint for dump resumption. AFAICS this has the same issue as the one resolved in the conntrack dumper, when we do if (!refcount_inc_not_zero(&exp->use)) to increment the refcount, there is a chance that exp == last, which causes a double-increment of the refcount and subsequent memory leak.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-11
In the Linux kernel, the following vulnerability has been resolved: gfs2: Set .migrate_folio in gfs2_{rgrp,meta}_aops Clears up the warning added in 7ee3647243e5 ("migrate: Remove call to ->writepage") that occurs in various xfstests, causing "something found in dmesg" failures. [ 341.136573] gfs2_meta_aops does not implement migrate_folio [ 341.136953] WARNING: CPU: 1 PID: 36 at mm/migrate.c:944 move_to_new_folio+0x2f8/0x300
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-11
In the Linux kernel, the following vulnerability has been resolved: fs: Prevent file descriptor table allocations exceeding INT_MAX When sysctl_nr_open is set to a very high value (for example, 1073741816 as set by systemd), processes attempting to use file descriptors near the limit can trigger massive memory allocation attempts that exceed INT_MAX, resulting in a WARNING in mm/slub.c: WARNING: CPU: 0 PID: 44 at mm/slub.c:5027 __kvmalloc_node_noprof+0x21a/0x288 This happens because kvmalloc_array() and kvmalloc() check if the requested size exceeds INT_MAX and emit a warning when the allocation is not flagged with __GFP_NOWARN. Specifically, when nr_open is set to 1073741816 (0x3ffffff8) and a process calls dup2(oldfd, 1073741880), the kernel attempts to allocate: - File descriptor array: 1073741880 * 8 bytes = 8,589,935,040 bytes - Multiple bitmaps: ~400MB - Total allocation size: > 8GB (exceeding INT_MAX = 2,147,483,647) Reproducer: 1. Set /proc/sys/fs/nr_open to 1073741816: # echo 1073741816 > /proc/sys/fs/nr_open 2. Run a program that uses a high file descriptor: #include <unistd.h> #include <sys/resource.h> int main() { struct rlimit rlim = {1073741824, 1073741824}; setrlimit(RLIMIT_NOFILE, &rlim); dup2(2, 1073741880); // Triggers the warning return 0; } 3. Observe WARNING in dmesg at mm/slub.c:5027 systemd commit a8b627a introduced automatic bumping of fs.nr_open to the maximum possible value. The rationale was that systems with memory control groups (memcg) no longer need separate file descriptor limits since memory is properly accounted. However, this change overlooked that: 1. The kernel's allocation functions still enforce INT_MAX as a maximum size regardless of memcg accounting 2. Programs and tests that legitimately test file descriptor limits can inadvertently trigger massive allocations 3. The resulting allocations (>8GB) are impractical and will always fail systemd's algorithm starts with INT_MAX and keeps halving the value until the kernel accepts it. On most systems, this results in nr_open being set to 1073741816 (0x3ffffff8), which is just under 1GB of file descriptors. While processes rarely use file descriptors near this limit in normal operation, certain selftests (like tools/testing/selftests/core/unshare_test.c) and programs that test file descriptor limits can trigger this issue. Fix this by adding a check in alloc_fdtable() to ensure the requested allocation size does not exceed INT_MAX. This causes the operation to fail with -EMFILE instead of triggering a kernel warning and avoids the impractical >8GB memory allocation request.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-11


Contact Us

Shodan ® - All rights reserved