In the Linux kernel, the following vulnerability has been resolved:
net: clear the dst when changing skb protocol
A not-so-careful NAT46 BPF program can crash the kernel
if it indiscriminately flips ingress packets from v4 to v6:
BUG: kernel NULL pointer dereference, address: 0000000000000000
ip6_rcv_core (net/ipv6/ip6_input.c:190:20)
ipv6_rcv (net/ipv6/ip6_input.c:306:8)
process_backlog (net/core/dev.c:6186:4)
napi_poll (net/core/dev.c:6906:9)
net_rx_action (net/core/dev.c:7028:13)
do_softirq (kernel/softirq.c:462:3)
netif_rx (net/core/dev.c:5326:3)
dev_loopback_xmit (net/core/dev.c:4015:2)
ip_mc_finish_output (net/ipv4/ip_output.c:363:8)
NF_HOOK (./include/linux/netfilter.h:314:9)
ip_mc_output (net/ipv4/ip_output.c:400:5)
dst_output (./include/net/dst.h:459:9)
ip_local_out (net/ipv4/ip_output.c:130:9)
ip_send_skb (net/ipv4/ip_output.c:1496:8)
udp_send_skb (net/ipv4/udp.c:1040:8)
udp_sendmsg (net/ipv4/udp.c:1328:10)
The output interface has a 4->6 program attached at ingress.
We try to loop the multicast skb back to the sending socket.
Ingress BPF runs as part of netif_rx(), pushes a valid v6 hdr
and changes skb->protocol to v6. We enter ip6_rcv_core which
tries to use skb_dst(). But the dst is still an IPv4 one left
after IPv4 mcast output.
Clear the dst in all BPF helpers which change the protocol.
Try to preserve metadata dsts, those may carry non-routing
metadata.
In the Linux kernel, the following vulnerability has been resolved:
ublk: santizize the arguments from userspace when adding a device
Sanity check the values for queue depth and number of queues
we get from userspace when adding a device.
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_set_pipapo: prevent overflow in lookup table allocation
When calculating the lookup table size, ensure the following
multiplication does not overflow:
- desc->field_len[] maximum value is U8_MAX multiplied by
NFT_PIPAPO_GROUPS_PER_BYTE(f) that can be 2, worst case.
- NFT_PIPAPO_BUCKETS(f->bb) is 2^8, worst case.
- sizeof(unsigned long), from sizeof(*f->lt), lt in
struct nft_pipapo_field.
Then, use check_mul_overflow() to multiply by bucket size and then use
check_add_overflow() to the alignment for avx2 (if needed). Finally, add
lt_size_check_overflow() helper and use it to consolidate this.
While at it, replace leftover allocation using the GFP_KERNEL to
GFP_KERNEL_ACCOUNT for consistency, in pipapo_resize().
In the Linux kernel, the following vulnerability has been resolved:
f2fs: zone: fix to avoid inconsistence in between SIT and SSA
w/ below testcase, it will cause inconsistence in between SIT and SSA.
create_null_blk 512 2 1024 1024
mkfs.f2fs -m /dev/nullb0
mount /dev/nullb0 /mnt/f2fs/
touch /mnt/f2fs/file
f2fs_io pinfile set /mnt/f2fs/file
fallocate -l 4GiB /mnt/f2fs/file
F2FS-fs (nullb0): Inconsistent segment (0) type [1, 0] in SSA and SIT
CPU: 5 UID: 0 PID: 2398 Comm: fallocate Tainted: G O 6.13.0-rc1 #84
Tainted: [O]=OOT_MODULE
Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006
Call Trace:
<TASK>
dump_stack_lvl+0xb3/0xd0
dump_stack+0x14/0x20
f2fs_handle_critical_error+0x18c/0x220 [f2fs]
f2fs_stop_checkpoint+0x38/0x50 [f2fs]
do_garbage_collect+0x674/0x6e0 [f2fs]
f2fs_gc_range+0x12b/0x230 [f2fs]
f2fs_allocate_pinning_section+0x5c/0x150 [f2fs]
f2fs_expand_inode_data+0x1cc/0x3c0 [f2fs]
f2fs_fallocate+0x3c3/0x410 [f2fs]
vfs_fallocate+0x15f/0x4b0
__x64_sys_fallocate+0x4a/0x80
x64_sys_call+0x15e8/0x1b80
do_syscall_64+0x68/0x130
entry_SYSCALL_64_after_hwframe+0x67/0x6f
RIP: 0033:0x7f9dba5197ca
F2FS-fs (nullb0): Stopped filesystem due to reason: 4
The reason is f2fs_gc_range() may try to migrate block in curseg, however,
its SSA block is not uptodate due to the last summary block data is still
in cache of curseg.
In this patch, we add a condition in f2fs_gc_range() to check whether
section is opened or not, and skip block migration for opened section.
In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7915: Fix null-ptr-deref in mt7915_mmio_wed_init()
devm_ioremap() returns NULL on error. Currently, mt7915_mmio_wed_init()
does not check for this case, which results in a NULL pointer
dereference.
Prevent null pointer dereference in mt7915_mmio_wed_init().
In the Linux kernel, the following vulnerability has been resolved:
net: phy: clear phydev->devlink when the link is deleted
There is a potential crash issue when disabling and re-enabling the
network port. When disabling the network port, phy_detach() calls
device_link_del() to remove the device link, but it does not clear
phydev->devlink, so phydev->devlink is not a NULL pointer. Then the
network port is re-enabled, but if phy_attach_direct() fails before
calling device_link_add(), the code jumps to the "error" label and
calls phy_detach(). Since phydev->devlink retains the old value from
the previous attach/detach cycle, device_link_del() uses the old value,
which accesses a NULL pointer and causes a crash. The simplified crash
log is as follows.
[ 24.702421] Call trace:
[ 24.704856] device_link_put_kref+0x20/0x120
[ 24.709124] device_link_del+0x30/0x48
[ 24.712864] phy_detach+0x24/0x168
[ 24.716261] phy_attach_direct+0x168/0x3a4
[ 24.720352] phylink_fwnode_phy_connect+0xc8/0x14c
[ 24.725140] phylink_of_phy_connect+0x1c/0x34
Therefore, phydev->devlink needs to be cleared when the device link is
deleted.
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: ti: Add NULL check in udma_probe()
devm_kasprintf() returns NULL when memory allocation fails. Currently,
udma_probe() does not check for this case, which results in a NULL
pointer dereference.
Add NULL check after devm_kasprintf() to prevent this issue.
In the Linux kernel, the following vulnerability has been resolved:
dm: limit swapping tables for devices with zone write plugs
dm_revalidate_zones() only allowed new or previously unzoned devices to
call blk_revalidate_disk_zones(). If the device was already zoned,
disk->nr_zones would always equal md->nr_zones, so dm_revalidate_zones()
returned without doing any work. This would make the zoned settings for
the device not match the new table. If the device had zone write plug
resources, it could run into errors like bdev_zone_is_seq() reading
invalid memory because disk->conv_zones_bitmap was the wrong size.
If the device doesn't have any zone write plug resources, calling
blk_revalidate_disk_zones() will always correctly update device. If
blk_revalidate_disk_zones() fails, it can still overwrite or clear the
current disk->nr_zones value. In this case, DM must restore the previous
value of disk->nr_zones, so that the zoned settings will continue to
match the previous value that it fell back to.
If the device already has zone write plug resources,
blk_revalidate_disk_zones() will not correctly update them, if it is
called for arbitrary zoned device changes. Since there is not much need
for this ability, the easiest solution is to disallow any table reloads
that change the zoned settings, for devices that already have zone plug
resources. Specifically, if a device already has zone plug resources
allocated, it can only switch to another zoned table that also emulates
zone append. Also, it cannot change the device size or the zone size. A
device can switch to an error target.