Vulnerabilities
Vulnerable Software
Linux:  >> Linux Kernel  >> 4.19.182  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: net: fec: Fix possible NPD in fec_enet_phy_reset_after_clk_enable() The function of_phy_find_device may return NULL, so we need to take care before dereferencing phy_dev.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-23
In the Linux kernel, the following vulnerability has been resolved: dmaengine: ti: edma: Fix memory allocation size for queue_priority_map Fix a critical memory allocation bug in edma_setup_from_hw() where queue_priority_map was allocated with insufficient memory. The code declared queue_priority_map as s8 (*)[2] (pointer to array of 2 s8), but allocated memory using sizeof(s8) instead of the correct size. This caused out-of-bounds memory writes when accessing: queue_priority_map[i][0] = i; queue_priority_map[i][1] = i; The bug manifested as kernel crashes with "Oops - undefined instruction" on ARM platforms (BeagleBoard-X15) during EDMA driver probe, as the memory corruption triggered kernel hardening features on Clang. Change the allocation to use sizeof(*queue_priority_map) which automatically gets the correct size for the 2D array structure.
CVSS Score
7.1
EPSS Score
0.0
Published
2025-09-23
In the Linux kernel, the following vulnerability has been resolved: can: xilinx_can: xcan_write_frame(): fix use-after-free of transmitted SKB can_put_echo_skb() takes ownership of the SKB and it may be freed during or after the call. However, xilinx_can xcan_write_frame() keeps using SKB after the call. Fix that by only calling can_put_echo_skb() after the code is done touching the SKB. The tx_lock is held for the entire xcan_write_frame() execution and also on the can_get_echo_skb() side so the order of operations does not matter. An earlier fix commit 3d3c817c3a40 ("can: xilinx_can: Fix usage of skb memory") did not move the can_put_echo_skb() call far enough. [mkl: add "commit" in front of sha1 in patch description] [mkl: fix indention]
CVSS Score
7.8
EPSS Score
0.0
Published
2025-09-23
In the Linux kernel, the following vulnerability has been resolved: wifi: brcmfmac: fix use-after-free when rescheduling brcmf_btcoex_info work The brcmf_btcoex_detach() only shuts down the btcoex timer, if the flag timer_on is false. However, the brcmf_btcoex_timerfunc(), which runs as timer handler, sets timer_on to false. This creates critical race conditions: 1.If brcmf_btcoex_detach() is called while brcmf_btcoex_timerfunc() is executing, it may observe timer_on as false and skip the call to timer_shutdown_sync(). 2.The brcmf_btcoex_timerfunc() may then reschedule the brcmf_btcoex_info worker after the cancel_work_sync() has been executed, resulting in use-after-free bugs. The use-after-free bugs occur in two distinct scenarios, depending on the timing of when the brcmf_btcoex_info struct is freed relative to the execution of its worker thread. Scenario 1: Freed before the worker is scheduled The brcmf_btcoex_info is deallocated before the worker is scheduled. A race condition can occur when schedule_work(&bt_local->work) is called after the target memory has been freed. The sequence of events is detailed below: CPU0 | CPU1 brcmf_btcoex_detach | brcmf_btcoex_timerfunc | bt_local->timer_on = false; if (cfg->btcoex->timer_on) | ... | cancel_work_sync(); | ... | kfree(cfg->btcoex); // FREE | | schedule_work(&bt_local->work); // USE Scenario 2: Freed after the worker is scheduled The brcmf_btcoex_info is freed after the worker has been scheduled but before or during its execution. In this case, statements within the brcmf_btcoex_handler() — such as the container_of macro and subsequent dereferences of the brcmf_btcoex_info object will cause a use-after-free access. The following timeline illustrates this scenario: CPU0 | CPU1 brcmf_btcoex_detach | brcmf_btcoex_timerfunc | bt_local->timer_on = false; if (cfg->btcoex->timer_on) | ... | cancel_work_sync(); | ... | schedule_work(); // Reschedule | kfree(cfg->btcoex); // FREE | brcmf_btcoex_handler() // Worker /* | btci = container_of(....); // USE The kfree() above could | ... also occur at any point | btci-> // USE during the worker's execution| */ | To resolve the race conditions, drop the conditional check and call timer_shutdown_sync() directly. It can deactivate the timer reliably, regardless of its current state. Once stopped, the timer_on state is then set to false.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-09-19
In the Linux kernel, the following vulnerability has been resolved: fs: writeback: fix use-after-free in __mark_inode_dirty() An use-after-free issue occurred when __mark_inode_dirty() get the bdi_writeback that was in the progress of switching. CPU: 1 PID: 562 Comm: systemd-random- Not tainted 6.6.56-gb4403bd46a8e #1 ...... pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : __mark_inode_dirty+0x124/0x418 lr : __mark_inode_dirty+0x118/0x418 sp : ffffffc08c9dbbc0 ........ Call trace: __mark_inode_dirty+0x124/0x418 generic_update_time+0x4c/0x60 file_modified+0xcc/0xd0 ext4_buffered_write_iter+0x58/0x124 ext4_file_write_iter+0x54/0x704 vfs_write+0x1c0/0x308 ksys_write+0x74/0x10c __arm64_sys_write+0x1c/0x28 invoke_syscall+0x48/0x114 el0_svc_common.constprop.0+0xc0/0xe0 do_el0_svc+0x1c/0x28 el0_svc+0x40/0xe4 el0t_64_sync_handler+0x120/0x12c el0t_64_sync+0x194/0x198 Root cause is: systemd-random-seed kworker ---------------------------------------------------------------------- ___mark_inode_dirty inode_switch_wbs_work_fn spin_lock(&inode->i_lock); inode_attach_wb locked_inode_to_wb_and_lock_list get inode->i_wb spin_unlock(&inode->i_lock); spin_lock(&wb->list_lock) spin_lock(&inode->i_lock) inode_io_list_move_locked spin_unlock(&wb->list_lock) spin_unlock(&inode->i_lock) spin_lock(&old_wb->list_lock) inode_do_switch_wbs spin_lock(&inode->i_lock) inode->i_wb = new_wb spin_unlock(&inode->i_lock) spin_unlock(&old_wb->list_lock) wb_put_many(old_wb, nr_switched) cgwb_release old wb released wb_wakeup_delayed() accesses wb, then trigger the use-after-free issue Fix this race condition by holding inode spinlock until wb_wakeup_delayed() finished.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-09-19
In the Linux kernel, the following vulnerability has been resolved: i40e: Fix potential invalid access when MAC list is empty list_first_entry() never returns NULL - if the list is empty, it still returns a pointer to an invalid object, leading to potential invalid memory access when dereferenced. Fix this by using list_first_entry_or_null instead of list_first_entry.
CVSS Score
7.1
EPSS Score
0.0
Published
2025-09-19
In the Linux kernel, the following vulnerability has been resolved: pcmcia: Fix a NULL pointer dereference in __iodyn_find_io_region() In __iodyn_find_io_region(), pcmcia_make_resource() is assigned to res and used in pci_bus_alloc_resource(). There is a dereference of res in pci_bus_alloc_resource(), which could lead to a NULL pointer dereference on failure of pcmcia_make_resource(). Fix this bug by adding a check of res.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-19
In the Linux kernel, the following vulnerability has been resolved: ppp: fix memory leak in pad_compress_skb If alloc_skb() fails in pad_compress_skb(), it returns NULL without releasing the old skb. The caller does: skb = pad_compress_skb(ppp, skb); if (!skb) goto drop; drop: kfree_skb(skb); When pad_compress_skb() returns NULL, the reference to the old skb is lost and kfree_skb(skb) ends up doing nothing, leading to a memory leak. Align pad_compress_skb() semantics with realloc(): only free the old skb if allocation and compression succeed. At the call site, use the new_skb variable so the original skb is not lost when pad_compress_skb() fails.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-19
In the Linux kernel, the following vulnerability has been resolved: ax25: properly unshare skbs in ax25_kiss_rcv() Bernard Pidoux reported a regression apparently caused by commit c353e8983e0d ("net: introduce per netns packet chains"). skb->dev becomes NULL and we crash in __netif_receive_skb_core(). Before above commit, different kind of bugs or corruptions could happen without a major crash. But the root cause is that ax25_kiss_rcv() can queue/mangle input skb without checking if this skb is shared or not. Many thanks to Bernard Pidoux for his help, diagnosis and tests. We had a similar issue years ago fixed with commit 7aaed57c5c28 ("phonet: properly unshare skbs in phonet_rcv()").
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-19
In the Linux kernel, the following vulnerability has been resolved: batman-adv: fix OOB read/write in network-coding decode batadv_nc_skb_decode_packet() trusts coded_len and checks only against skb->len. XOR starts at sizeof(struct batadv_unicast_packet), reducing payload headroom, and the source skb length is not verified, allowing an out-of-bounds read and a small out-of-bounds write. Validate that coded_len fits within the payload area of both destination and source sk_buffs before XORing.
CVSS Score
7.1
EPSS Score
0.0
Published
2025-09-19


Contact Us

Shodan ® - All rights reserved