MeterSphere is an open source continuous testing platform. Prior to version 2.10.25-lts, a logic flaw allows retrieval of arbitrary user information. This allows an unauthenticated attacker to log in to the system as any user. This issue has been patched in version 2.10.25-lts.
D-Link DIR-823G A1 v1.0.2B05 was discovered to contain a buffer overflow in the FillMacCloneMac parameter in the /EXCU_SHELL endpoint. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted input.
A NULL pointer dereference in the SetWLanRadioSettings function of D-Link DIR-823G A1 v1.0.2B05 allows attackers to cause a Denial of Service (DoS) via a crafted HTTP request.
A SQL Injection vulnerability exists in Esri ArcGIS Server versions 11.3, 11.4 and 11.5 on Windows, Linux and Kubernetes. This vulnerability allows a remote, unauthenticated attacker to execute arbitrary SQL commands via a specific ArcGIS Feature Service operation. Successful exploitation can potentially result in unauthorized access, modification, or deletion of data from the underlying Enterprise Geodatabase.
A vulnerability in danny-avila/librechat version 0.7.9 allows for HTML injection via the Accept-Language header. When a logged-in user sends an HTTP GET request with a crafted Accept-Language header, arbitrary HTML can be injected into the <html lang=""> tag of the response. This can lead to potential security risks such as cross-site scripting (XSS) attacks.
In langgenius/dify-web version 1.6.0, the authentication mechanism reveals the existence of user accounts by returning different error messages for non-existent and existing accounts. Specifically, when a login or registration attempt is made with a non-existent username or email, the system responds with a message such as "account not found." Conversely, when the username or email exists but the password is incorrect, a different error message is returned. This discrepancy allows an attacker to enumerate valid user accounts by analyzing the error responses, potentially facilitating targeted social engineering, brute force, or credential stuffing attacks.
Hugging Face Smolagents version 1.20.0 contains an XPath injection vulnerability in the search_item_ctrl_f function located in src/smolagents/vision_web_browser.py. The function constructs an XPath query by directly concatenating user-supplied input into the XPath expression without proper sanitization or escaping. This allows an attacker to inject malicious XPath syntax that can alter the intended query logic. The vulnerability enables attackers to bypass search filters, access unintended DOM elements, and disrupt web automation workflows. This can lead to information disclosure, manipulation of AI agent interactions, and compromise the reliability of automated web tasks. The issue is fixed in version 1.22.0.
Stored Cross-site Scripting (XSS) in Oct8ne Chatbot v2.3. This vulnerability allows an attacker to execute JavaScript code in the victim's browser by injecting a malicious payload through the creation of a transcript that is sent by email. This vulnerability can be exploited to steal sensitive user data, such as session cookies, or to perform actions on behalf of the user, through /Records/SendSummaryMail.
The communication protocol implemented in Ghost Robotics Vision 60 v0.27.2 could allow an attacker to send commands to the robot from an external attack station, impersonating the control station (tablet) and gaining unauthorised full control of the robot. The absence of encryption and authentication mechanisms in the communication protocol allows an attacker to capture legitimate traffic between the robot and the controller, replicate it, and send any valid command to the robot from any attacking computer or device. The communication protocol used in this interface is based on MAVLink, a widely documented protocol, which increases the likelihood of attack. There are two methods for connecting to the robot remotely: Wi-Fi and 4G/LTE.
Ghost Robotics Vision 60 v0.27.2 includes, among its physical interfaces, three RJ45 connectors and a USB Type-C port. The vulnerability is due to the lack of authentication mechanisms when establishing connections through these ports. Specifically, with regard to network connectivity, the robot's internal router automatically assigns IP addresses to any device physically connected to it. An attacker could connect a WiFi access point under their control to gain access to the robot's network without needing the credentials for the deployed network. Once inside, the attacker can monitor all its data, as the robot runs on ROS 2 without authentication by default.