In the Linux kernel, the following vulnerability has been resolved:
NFSv4.2: fix reference count leaks in _nfs42_proc_copy_notify()
[You don't often get email from xiongx18@fudan.edu.cn. Learn why this is important at http://aka.ms/LearnAboutSenderIdentification.]
The reference counting issue happens in two error paths in the
function _nfs42_proc_copy_notify(). In both error paths, the function
simply returns the error code and forgets to balance the refcount of
object `ctx`, bumped by get_nfs_open_context() earlier, which may
cause refcount leaks.
Fix it by balancing refcount of the `ctx` object before the function
returns in both error paths.
In the Linux kernel, the following vulnerability has been resolved:
staging: vchiq_core: handle NULL result of find_service_by_handle
In case of an invalid handle the function find_servive_by_handle
returns NULL. So take care of this and avoid a NULL pointer dereference.
In the Linux kernel, the following vulnerability has been resolved:
staging: wfx: fix an error handling in wfx_init_common()
One error handler of wfx_init_common() return without calling
ieee80211_free_hw(hw), which may result in memory leak. And I add
one err label to unify the error handler, which is useful for the
subsequent changes.
In the Linux kernel, the following vulnerability has been resolved:
lz4: fix LZ4_decompress_safe_partial read out of bound
When partialDecoding, it is EOF if we've either filled the output buffer
or can't proceed with reading an offset for following match.
In some extreme corner cases when compressed data is suitably corrupted,
UAF will occur. As reported by KASAN [1], LZ4_decompress_safe_partial
may lead to read out of bound problem during decoding. lz4 upstream has
fixed it [2] and this issue has been disscussed here [3] before.
current decompression routine was ported from lz4 v1.8.3, bumping
lib/lz4 to v1.9.+ is certainly a huge work to be done later, so, we'd
better fix it first.
[1] https://lore.kernel.org/all/000000000000830d1205cf7f0477@google.com/
[2] https://github.com/lz4/lz4/commit/c5d6f8a8be3927c0bec91bcc58667a6cfad244ad#
[3] https://lore.kernel.org/all/CC666AE8-4CA4-4951-B6FB-A2EFDE3AC03B@fb.com/
In the Linux kernel, the following vulnerability has been resolved:
gpio: Restrict usage of GPIO chip irq members before initialization
GPIO chip irq members are exposed before they could be completely
initialized and this leads to race conditions.
One such issue was observed for the gc->irq.domain variable which
was accessed through the I2C interface in gpiochip_to_irq() before
it could be initialized by gpiochip_add_irqchip(). This resulted in
Kernel NULL pointer dereference.
Following are the logs for reference :-
kernel: Call Trace:
kernel: gpiod_to_irq+0x53/0x70
kernel: acpi_dev_gpio_irq_get_by+0x113/0x1f0
kernel: i2c_acpi_get_irq+0xc0/0xd0
kernel: i2c_device_probe+0x28a/0x2a0
kernel: really_probe+0xf2/0x460
kernel: RIP: 0010:gpiochip_to_irq+0x47/0xc0
To avoid such scenarios, restrict usage of GPIO chip irq members before
they are completely initialized.
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix qgroup reserve overflow the qgroup limit
We use extent_changeset->bytes_changed in qgroup_reserve_data() to record
how many bytes we set for EXTENT_QGROUP_RESERVED state. Currently the
bytes_changed is set as "unsigned int", and it will overflow if we try to
fallocate a range larger than 4GiB. The result is we reserve less bytes
and eventually break the qgroup limit.
Unlike regular buffered/direct write, which we use one changeset for
each ordered extent, which can never be larger than 256M. For
fallocate, we use one changeset for the whole range, thus it no longer
respects the 256M per extent limit, and caused the problem.
The following example test script reproduces the problem:
$ cat qgroup-overflow.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
mkfs.btrfs -f $DEV
mount $DEV $MNT
# Set qgroup limit to 2GiB.
btrfs quota enable $MNT
btrfs qgroup limit 2G $MNT
# Try to fallocate a 3GiB file. This should fail.
echo
echo "Try to fallocate a 3GiB file..."
fallocate -l 3G $MNT/3G.file
# Try to fallocate a 5GiB file.
echo
echo "Try to fallocate a 5GiB file..."
fallocate -l 5G $MNT/5G.file
# See we break the qgroup limit.
echo
sync
btrfs qgroup show -r $MNT
umount $MNT
When running the test:
$ ./qgroup-overflow.sh
(...)
Try to fallocate a 3GiB file...
fallocate: fallocate failed: Disk quota exceeded
Try to fallocate a 5GiB file...
qgroupid rfer excl max_rfer
-------- ---- ---- --------
0/5 5.00GiB 5.00GiB 2.00GiB
Since we have no control of how bytes_changed is used, it's better to
set it to u64.
In the Linux kernel, the following vulnerability has been resolved:
scsi: target: tcmu: Fix possible page UAF
tcmu_try_get_data_page() looks up pages under cmdr_lock, but it does not
take refcount properly and just returns page pointer. When
tcmu_try_get_data_page() returns, the returned page may have been freed by
tcmu_blocks_release().
We need to get_page() under cmdr_lock to avoid concurrent
tcmu_blocks_release().
In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Check for potential null return of kmalloc_array()
As the kmalloc_array() may return null, the 'event_waiters[i].wait' would lead to null-pointer dereference.
Therefore, it is better to check the return value of kmalloc_array() to avoid this confusion.
In the Linux kernel, the following vulnerability has been resolved:
samples/landlock: Fix path_list memory leak
Clang static analysis reports this error
sandboxer.c:134:8: warning: Potential leak of memory
pointed to by 'path_list'
ret = 0;
^
path_list is allocated in parse_path() but never freed.
In the Linux kernel, the following vulnerability has been resolved:
media: staging: media: zoran: move videodev alloc
Move some code out of zr36057_init() and create new functions for handling
zr->video_dev. This permit to ease code reading and fix a zr->video_dev
memory leak.