In the Linux kernel, the following vulnerability has been resolved:
net: phy: mscc: Fix memory leak when using one step timestamping
Fix memory leak when running one-step timestamping. When running
one-step sync timestamping, the HW is configured to insert the TX time
into the frame, so there is no reason to keep the skb anymore. As in
this case the HW will never generate an interrupt to say that the frame
was timestamped, then the frame will never released.
Fix this by freeing the frame in case of one-step timestamping.
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: ti: Add NULL check in udma_probe()
devm_kasprintf() returns NULL when memory allocation fails. Currently,
udma_probe() does not check for this case, which results in a NULL
pointer dereference.
Add NULL check after devm_kasprintf() to prevent this issue.
In the Linux kernel, the following vulnerability has been resolved:
hwmon: (asus-ec-sensors) check sensor index in read_string()
Prevent a potential invalid memory access when the requested sensor
is not found.
find_ec_sensor_index() may return a negative value (e.g. -ENOENT),
but its result was used without checking, which could lead to
undefined behavior when passed to get_sensor_info().
Add a proper check to return -EINVAL if sensor_index is negative.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
[groeck: Return error code returned from find_ec_sensor_index]
In the Linux kernel, the following vulnerability has been resolved:
coresight: prevent deactivate active config while enabling the config
While enable active config via cscfg_csdev_enable_active_config(),
active config could be deactivated via configfs' sysfs interface.
This could make UAF issue in below scenario:
CPU0 CPU1
(sysfs enable) load module
cscfg_load_config_sets()
activate config. // sysfs
(sys_active_cnt == 1)
...
cscfg_csdev_enable_active_config()
lock(csdev->cscfg_csdev_lock)
// here load config activate by CPU1
unlock(csdev->cscfg_csdev_lock)
deactivate config // sysfs
(sys_activec_cnt == 0)
cscfg_unload_config_sets()
unload module
// access to config_desc which freed
// while unloading module.
cscfg_csdev_enable_config
To address this, use cscfg_config_desc's active_cnt as a reference count
which will be holded when
- activate the config.
- enable the activated config.
and put the module reference when config_active_cnt == 0.
In the Linux kernel, the following vulnerability has been resolved:
serial: Fix potential null-ptr-deref in mlb_usio_probe()
devm_ioremap() can return NULL on error. Currently, mlb_usio_probe()
does not check for this case, which could result in a NULL pointer
dereference.
Add NULL check after devm_ioremap() to prevent this issue.
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_set_pipapo_avx2: fix initial map fill
If the first field doesn't cover the entire start map, then we must zero
out the remainder, else we leak those bits into the next match round map.
The early fix was incomplete and did only fix up the generic C
implementation.
A followup patch adds a test case to nft_concat_range.sh.
In the Linux kernel, the following vulnerability has been resolved:
gve: add missing NULL check for gve_alloc_pending_packet() in TX DQO
gve_alloc_pending_packet() can return NULL, but gve_tx_add_skb_dqo()
did not check for this case before dereferencing the returned pointer.
Add a missing NULL check to prevent a potential NULL pointer
dereference when allocation fails.
This improves robustness in low-memory scenarios.
In the Linux kernel, the following vulnerability has been resolved:
net: fix udp gso skb_segment after pull from frag_list
Commit a1e40ac5b5e9 ("net: gso: fix udp gso fraglist segmentation after
pull from frag_list") detected invalid geometry in frag_list skbs and
redirects them from skb_segment_list to more robust skb_segment. But some
packets with modified geometry can also hit bugs in that code. We don't
know how many such cases exist. Addressing each one by one also requires
touching the complex skb_segment code, which risks introducing bugs for
other types of skbs. Instead, linearize all these packets that fail the
basic invariants on gso fraglist skbs. That is more robust.
If only part of the fraglist payload is pulled into head_skb, it will
always cause exception when splitting skbs by skb_segment. For detailed
call stack information, see below.
Valid SKB_GSO_FRAGLIST skbs
- consist of two or more segments
- the head_skb holds the protocol headers plus first gso_size
- one or more frag_list skbs hold exactly one segment
- all but the last must be gso_size
Optional datapath hooks such as NAT and BPF (bpf_skb_pull_data) can
modify fraglist skbs, breaking these invariants.
In extreme cases they pull one part of data into skb linear. For UDP,
this causes three payloads with lengths of (11,11,10) bytes were
pulled tail to become (12,10,10) bytes.
The skbs no longer meets the above SKB_GSO_FRAGLIST conditions because
payload was pulled into head_skb, it needs to be linearized before pass
to regular skb_segment.
skb_segment+0xcd0/0xd14
__udp_gso_segment+0x334/0x5f4
udp4_ufo_fragment+0x118/0x15c
inet_gso_segment+0x164/0x338
skb_mac_gso_segment+0xc4/0x13c
__skb_gso_segment+0xc4/0x124
validate_xmit_skb+0x9c/0x2c0
validate_xmit_skb_list+0x4c/0x80
sch_direct_xmit+0x70/0x404
__dev_queue_xmit+0x64c/0xe5c
neigh_resolve_output+0x178/0x1c4
ip_finish_output2+0x37c/0x47c
__ip_finish_output+0x194/0x240
ip_finish_output+0x20/0xf4
ip_output+0x100/0x1a0
NF_HOOK+0xc4/0x16c
ip_forward+0x314/0x32c
ip_rcv+0x90/0x118
__netif_receive_skb+0x74/0x124
process_backlog+0xe8/0x1a4
__napi_poll+0x5c/0x1f8
net_rx_action+0x154/0x314
handle_softirqs+0x154/0x4b8
[118.376811] [C201134] rxq0_pus: [name:bug&]kernel BUG at net/core/skbuff.c:4278!
[118.376829] [C201134] rxq0_pus: [name:traps&]Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP
[118.470774] [C201134] rxq0_pus: [name:mrdump&]Kernel Offset: 0x178cc00000 from 0xffffffc008000000
[118.470810] [C201134] rxq0_pus: [name:mrdump&]PHYS_OFFSET: 0x40000000
[118.470827] [C201134] rxq0_pus: [name:mrdump&]pstate: 60400005 (nZCv daif +PAN -UAO)
[118.470848] [C201134] rxq0_pus: [name:mrdump&]pc : [0xffffffd79598aefc] skb_segment+0xcd0/0xd14
[118.470900] [C201134] rxq0_pus: [name:mrdump&]lr : [0xffffffd79598a5e8] skb_segment+0x3bc/0xd14
[118.470928] [C201134] rxq0_pus: [name:mrdump&]sp : ffffffc008013770
In the Linux kernel, the following vulnerability has been resolved:
net: stmmac: make sure that ptp_rate is not 0 before configuring timestamping
The stmmac platform drivers that do not open-code the clk_ptp_rate value
after having retrieved the default one from the device-tree can end up
with 0 in clk_ptp_rate (as clk_get_rate can return 0). It will
eventually propagate up to PTP initialization when bringing up the
interface, leading to a divide by 0:
Division by zero in kernel.
CPU: 1 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.12.30-00001-g48313bd5768a #22
Hardware name: STM32 (Device Tree Support)
Call trace:
unwind_backtrace from show_stack+0x18/0x1c
show_stack from dump_stack_lvl+0x6c/0x8c
dump_stack_lvl from Ldiv0_64+0x8/0x18
Ldiv0_64 from stmmac_init_tstamp_counter+0x190/0x1a4
stmmac_init_tstamp_counter from stmmac_hw_setup+0xc1c/0x111c
stmmac_hw_setup from __stmmac_open+0x18c/0x434
__stmmac_open from stmmac_open+0x3c/0xbc
stmmac_open from __dev_open+0xf4/0x1ac
__dev_open from __dev_change_flags+0x1cc/0x224
__dev_change_flags from dev_change_flags+0x24/0x60
dev_change_flags from ip_auto_config+0x2e8/0x11a0
ip_auto_config from do_one_initcall+0x84/0x33c
do_one_initcall from kernel_init_freeable+0x1b8/0x214
kernel_init_freeable from kernel_init+0x24/0x140
kernel_init from ret_from_fork+0x14/0x28
Exception stack(0xe0815fb0 to 0xe0815ff8)
Prevent this division by 0 by adding an explicit check and error log
about the actual issue. While at it, remove the same check from
stmmac_ptp_register, which then becomes duplicate