Multiple Cisco products are affected by a vulnerability with TCP Fast Open (TFO) when used in conjunction with the Snort detection engine that could allow an unauthenticated, remote attacker to bypass a configured file policy for HTTP. The vulnerability is due to incorrect detection of the HTTP payload if it is contained at least partially within the TFO connection handshake. An attacker could exploit this vulnerability by sending crafted TFO packets with an HTTP payload through an affected device. A successful exploit could allow the attacker to bypass configured file policy for HTTP packets and deliver a malicious payload.
Multiple Cisco products are affected by a vulnerability in the Snort application detection engine that could allow an unauthenticated, remote attacker to bypass the configured policies on an affected system. The vulnerability is due to a flaw in the detection algorithm. An attacker could exploit this vulnerability by sending crafted packets that would flow through an affected system. A successful exploit could allow the attacker to bypass the configured policies and deliver a malicious payload to the protected network.
A vulnerability in the packet filtering features of Cisco SD-WAN Software could allow an unauthenticated, remote attacker to bypass L3 and L4 traffic filters. The vulnerability is due to improper traffic filtering conditions on an affected device. An attacker could exploit this vulnerability by crafting a malicious TCP packet with specific characteristics and sending it to a targeted device. A successful exploit could allow the attacker to bypass the L3 and L4 traffic filters and inject an arbitrary packet into the network.
A vulnerability in the DHCP message handler of Cisco IOS XE Software for Cisco cBR-8 Converged Broadband Routers could allow an unauthenticated, remote attacker to cause the supervisor to crash, which could result in a denial of service (DoS) condition. The vulnerability is due to insufficient error handling when DHCP version 4 (DHCPv4) messages are parsed. An attacker could exploit this vulnerability by sending a malicious DHCPv4 message to or through a WAN interface of an affected device. A successful exploit could allow the attacker to cause a reload of the affected device. Note: On Cisco cBR-8 Converged Broadband Routers, all of the following are considered WAN interfaces: 10 Gbps Ethernet interfaces 100 Gbps Ethernet interfaces Port channel interfaces that include multiple 10 and/or 100 Gbps Ethernet interfaces
A vulnerability in the Umbrella Connector component of Cisco IOS XE Software for Cisco Catalyst 9200 Series Switches could allow an unauthenticated, remote attacker to trigger a reload, resulting in a denial of service condition on an affected device. The vulnerability is due to insufficient error handling when parsing DNS requests. An attacker could exploit this vulnerability by sending a series of malicious DNS requests to an Umbrella Connector client interface of an affected device. A successful exploit could allow the attacker to cause a crash of the iosd process, which triggers a reload of the affected device.
A vulnerability in the ISDN subsystem of Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, adjacent attacker to cause a reload of an affected device, resulting in a denial of service (DoS) condition. The vulnerability is due to insufficient input validation when the ISDN Q.931 messages are processed. An attacker could exploit this vulnerability by sending a malicious ISDN Q.931 message to an affected device. A successful exploit could allow the attacker to cause the process to crash, resulting in a reload of the affected device.
A vulnerability in the PROFINET handler for Link Layer Discovery Protocol (LLDP) messages of Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, adjacent attacker to cause a crash on an affected device, resulting in a denial of service (DoS) condition. The vulnerability is due to insufficient validation of LLDP messages in the PROFINET LLDP message handler. An attacker could exploit this vulnerability by sending a malicious LLDP message to an affected device. A successful exploit could allow the attacker to cause the affected device to reload.
Multiple vulnerabilities in the initialization routines that are executed during bootup of Cisco IOS XE Software for Cisco ASR 900 Series Aggregation Services Routers with a Route Switch Processor 3 (RSP3) installed could allow an authenticated, local attacker with high privileges to execute persistent code at bootup and break the chain of trust. These vulnerabilities are due to incorrect validations by boot scripts when specific ROM monitor (ROMMON) variables are set. An attacker could exploit these vulnerabilities by copying a specific file to the local file system of an affected device and defining specific ROMMON variables. A successful exploit could allow the attacker to run arbitrary code on the underlying operating system (OS) with root privileges. To exploit these vulnerabilities, an attacker would need to have access to the root shell on the device or have physical access to the device.
A vulnerability in the web server authentication of Cisco IOS XE Software could allow an authenticated, remote attacker to crash the web server on the device. The vulnerability is due to insufficient input validation during authentication. An attacker could exploit this vulnerability by entering unexpected characters during a valid authentication. A successful exploit could allow the attacker to crash the web server on the device, which must be manually recovered by disabling and re-enabling the web server.
A vulnerability in the Common Open Policy Service (COPS) engine of Cisco IOS XE Software on Cisco cBR-8 Converged Broadband Routers could allow an unauthenticated, remote attacker to crash a device. The vulnerability is due to insufficient input validation. An attacker could exploit this vulnerability by sending a malformed COPS message to the device. A successful exploit could allow the attacker to crash the device.