Vulnerabilities
Vulnerable Software
Security Vulnerabilities - CVEs Published In 2024
Itsourcecode Online Discussion Forum Project v.1.0.0 is vulnerable to Cross Site Scripting (XSS) via /bcc_forum/members/home.php.
CVSS Score
5.4
EPSS Score
0.001
Published
2024-12-04
In the Linux kernel, the following vulnerability has been resolved: netlink: terminate outstanding dump on socket close Netlink supports iterative dumping of data. It provides the families the following ops: - start - (optional) kicks off the dumping process - dump - actual dump helper, keeps getting called until it returns 0 - done - (optional) pairs with .start, can be used for cleanup The whole process is asynchronous and the repeated calls to .dump don't actually happen in a tight loop, but rather are triggered in response to recvmsg() on the socket. This gives the user full control over the dump, but also means that the user can close the socket without getting to the end of the dump. To make sure .start is always paired with .done we check if there is an ongoing dump before freeing the socket, and if so call .done. The complication is that sockets can get freed from BH and .done is allowed to sleep. So we use a workqueue to defer the call, when needed. Unfortunately this does not work correctly. What we defer is not the cleanup but rather releasing a reference on the socket. We have no guarantee that we own the last reference, if someone else holds the socket they may release it in BH and we're back to square one. The whole dance, however, appears to be unnecessary. Only the user can interact with dumps, so we can clean up when socket is closed. And close always happens in process context. Some async code may still access the socket after close, queue notification skbs to it etc. but no dumps can start, end or otherwise make progress. Delete the workqueue and flush the dump state directly from the release handler. Note that further cleanup is possible in -next, for instance we now always call .done before releasing the main module reference, so dump doesn't have to take a reference of its own.
CVSS Score
5.5
EPSS Score
0.0
Published
2024-12-04
In the Linux kernel, the following vulnerability has been resolved: sctp: fix possible UAF in sctp_v6_available() A lockdep report [1] with CONFIG_PROVE_RCU_LIST=y hints that sctp_v6_available() is calling dev_get_by_index_rcu() and ipv6_chk_addr() without holding rcu. [1] ============================= WARNING: suspicious RCU usage 6.12.0-rc5-virtme #1216 Tainted: G W ----------------------------- net/core/dev.c:876 RCU-list traversed in non-reader section!! other info that might help us debug this: rcu_scheduler_active = 2, debug_locks = 1 1 lock held by sctp_hello/31495: #0: ffff9f1ebbdb7418 (sk_lock-AF_INET6){+.+.}-{0:0}, at: sctp_bind (./arch/x86/include/asm/jump_label.h:27 net/sctp/socket.c:315) sctp stack backtrace: CPU: 7 UID: 0 PID: 31495 Comm: sctp_hello Tainted: G W 6.12.0-rc5-virtme #1216 Tainted: [W]=WARN Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 Call Trace: <TASK> dump_stack_lvl (lib/dump_stack.c:123) lockdep_rcu_suspicious (kernel/locking/lockdep.c:6822) dev_get_by_index_rcu (net/core/dev.c:876 (discriminator 7)) sctp_v6_available (net/sctp/ipv6.c:701) sctp sctp_do_bind (net/sctp/socket.c:400 (discriminator 1)) sctp sctp_bind (net/sctp/socket.c:320) sctp inet6_bind_sk (net/ipv6/af_inet6.c:465) ? security_socket_bind (security/security.c:4581 (discriminator 1)) __sys_bind (net/socket.c:1848 net/socket.c:1869) ? do_user_addr_fault (./include/linux/rcupdate.h:347 ./include/linux/rcupdate.h:880 ./include/linux/mm.h:729 arch/x86/mm/fault.c:1340) ? do_user_addr_fault (./arch/x86/include/asm/preempt.h:84 (discriminator 13) ./include/linux/rcupdate.h:98 (discriminator 13) ./include/linux/rcupdate.h:882 (discriminator 13) ./include/linux/mm.h:729 (discriminator 13) arch/x86/mm/fault.c:1340 (discriminator 13)) __x64_sys_bind (net/socket.c:1877 (discriminator 1) net/socket.c:1875 (discriminator 1) net/socket.c:1875 (discriminator 1)) do_syscall_64 (arch/x86/entry/common.c:52 (discriminator 1) arch/x86/entry/common.c:83 (discriminator 1)) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130) RIP: 0033:0x7f59b934a1e7 Code: 44 00 00 48 8b 15 39 8c 0c 00 f7 d8 64 89 02 b8 ff ff ff ff eb bd 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 b8 31 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 09 8c 0c 00 f7 d8 64 89 01 48 All code ======== 0: 44 00 00 add %r8b,(%rax) 3: 48 8b 15 39 8c 0c 00 mov 0xc8c39(%rip),%rdx # 0xc8c43 a: f7 d8 neg %eax c: 64 89 02 mov %eax,%fs:(%rdx) f: b8 ff ff ff ff mov $0xffffffff,%eax 14: eb bd jmp 0xffffffffffffffd3 16: 66 2e 0f 1f 84 00 00 cs nopw 0x0(%rax,%rax,1) 1d: 00 00 00 20: 0f 1f 00 nopl (%rax) 23: b8 31 00 00 00 mov $0x31,%eax 28: 0f 05 syscall 2a:* 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax <-- trapping instruction 30: 73 01 jae 0x33 32: c3 ret 33: 48 8b 0d 09 8c 0c 00 mov 0xc8c09(%rip),%rcx # 0xc8c43 3a: f7 d8 neg %eax 3c: 64 89 01 mov %eax,%fs:(%rcx) 3f: 48 rex.W Code starting with the faulting instruction =========================================== 0: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax 6: 73 01 jae 0x9 8: c3 ret 9: 48 8b 0d 09 8c 0c 00 mov 0xc8c09(%rip),%rcx # 0xc8c19 10: f7 d8 neg %eax 12: 64 89 01 mov %eax,%fs:(%rcx) 15: 48 rex.W RSP: 002b:00007ffe2d0ad398 EFLAGS: 00000202 ORIG_RAX: 0000000000000031 RAX: ffffffffffffffda RBX: 00007ffe2d0ad3d0 RCX: 00007f59b934a1e7 RDX: 000000000000001c RSI: 00007ffe2d0ad3d0 RDI: 0000000000000005 RBP: 0000000000000005 R08: 1999999999999999 R09: 0000000000000000 R10: 00007f59b9253298 R11: 000000000000 ---truncated---
CVSS Score
7.8
EPSS Score
0.0
Published
2024-12-04
In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix null-ptr-deref in block_touch_buffer tracepoint Patch series "nilfs2: fix null-ptr-deref bugs on block tracepoints". This series fixes null pointer dereference bugs that occur when using nilfs2 and two block-related tracepoints. This patch (of 2): It has been reported that when using "block:block_touch_buffer" tracepoint, touch_buffer() called from __nilfs_get_folio_block() causes a NULL pointer dereference, or a general protection fault when KASAN is enabled. This happens because since the tracepoint was added in touch_buffer(), it references the dev_t member bh->b_bdev->bd_dev regardless of whether the buffer head has a pointer to a block_device structure. In the current implementation, the block_device structure is set after the function returns to the caller. Here, touch_buffer() is used to mark the folio/page that owns the buffer head as accessed, but the common search helper for folio/page used by the caller function was optimized to mark the folio/page as accessed when it was reimplemented a long time ago, eliminating the need to call touch_buffer() here in the first place. So this solves the issue by eliminating the touch_buffer() call itself.
CVSS Score
5.5
EPSS Score
0.0
Published
2024-12-04
In the Linux kernel, the following vulnerability has been resolved: drm/xe/oa: Fix "Missing outer runtime PM protection" warning Fix the following drm_WARN: [953.586396] xe 0000:00:02.0: [drm] Missing outer runtime PM protection ... <4> [953.587090] ? xe_pm_runtime_get_noresume+0x8d/0xa0 [xe] <4> [953.587208] guc_exec_queue_add_msg+0x28/0x130 [xe] <4> [953.587319] guc_exec_queue_fini+0x3a/0x40 [xe] <4> [953.587425] xe_exec_queue_destroy+0xb3/0xf0 [xe] <4> [953.587515] xe_oa_release+0x9c/0xc0 [xe] (cherry picked from commit b107c63d2953907908fd0cafb0e543b3c3167b75)
CVSS Score
5.5
EPSS Score
0.0
Published
2024-12-04
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Handle dml allocation failure to avoid crash [Why] In the case where a dml allocation fails for any reason, the current state's dml contexts would no longer be valid. Then subsequent calls dc_state_copy_internal would shallow copy invalid memory and if the new state was released, a double free would occur. [How] Reset dml pointers in new_state to NULL and avoid invalid pointer (cherry picked from commit bcafdc61529a48f6f06355d78eb41b3aeda5296c)
CVSS Score
7.8
EPSS Score
0.0
Published
2024-12-04
In the Linux kernel, the following vulnerability has been resolved: pmdomain: imx93-blk-ctrl: correct remove path The check condition should be 'i < bc->onecell_data.num_domains', not 'bc->onecell_data.num_domains' which will make the look never finish and cause kernel panic. Also disable runtime to address "imx93-blk-ctrl 4ac10000.system-controller: Unbalanced pm_runtime_enable!"
CVSS Score
5.5
EPSS Score
0.0
Published
2024-12-04
In the Linux kernel, the following vulnerability has been resolved: KVM: VMX: Bury Intel PT virtualization (guest/host mode) behind CONFIG_BROKEN Hide KVM's pt_mode module param behind CONFIG_BROKEN, i.e. disable support for virtualizing Intel PT via guest/host mode unless BROKEN=y. There are myriad bugs in the implementation, some of which are fatal to the guest, and others which put the stability and health of the host at risk. For guest fatalities, the most glaring issue is that KVM fails to ensure tracing is disabled, and *stays* disabled prior to VM-Enter, which is necessary as hardware disallows loading (the guest's) RTIT_CTL if tracing is enabled (enforced via a VMX consistency check). Per the SDM: If the logical processor is operating with Intel PT enabled (if IA32_RTIT_CTL.TraceEn = 1) at the time of VM entry, the "load IA32_RTIT_CTL" VM-entry control must be 0. On the host side, KVM doesn't validate the guest CPUID configuration provided by userspace, and even worse, uses the guest configuration to decide what MSRs to save/load at VM-Enter and VM-Exit. E.g. configuring guest CPUID to enumerate more address ranges than are supported in hardware will result in KVM trying to passthrough, save, and load non-existent MSRs, which generates a variety of WARNs, ToPA ERRORs in the host, a potential deadlock, etc.
CVSS Score
6.5
EPSS Score
0.0
Published
2024-12-04
In the Linux kernel, the following vulnerability has been resolved: mm: revert "mm: shmem: fix data-race in shmem_getattr()" Revert d949d1d14fa2 ("mm: shmem: fix data-race in shmem_getattr()") as suggested by Chuck [1]. It is causing deadlocks when accessing tmpfs over NFS. As Hugh commented, "added just to silence a syzbot sanitizer splat: added where there has never been any practical problem".
CVSS Score
4.7
EPSS Score
0.0
Published
2024-12-04
In the Linux kernel, the following vulnerability has been resolved: ARM: fix cacheflush with PAN It seems that the cacheflush syscall got broken when PAN for LPAE was implemented. User access was not enabled around the cache maintenance instructions, causing them to fault.
CVSS Score
5.5
EPSS Score
0.0
Published
2024-12-04


Contact Us

Shodan ® - All rights reserved