Vulnerabilities
Vulnerable Software
Debian:  >> Debian Linux  >> 11.0  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: net: appletalk: Fix use-after-free in AARP proxy probe The AARP proxy‐probe routine (aarp_proxy_probe_network) sends a probe, releases the aarp_lock, sleeps, then re-acquires the lock. During that window an expire timer thread (__aarp_expire_timer) can remove and kfree() the same entry, leading to a use-after-free. race condition: cpu 0 | cpu 1 atalk_sendmsg() | atif_proxy_probe_device() aarp_send_ddp() | aarp_proxy_probe_network() mod_timer() | lock(aarp_lock) // LOCK!! timeout around 200ms | alloc(aarp_entry) and then call | proxies[hash] = aarp_entry aarp_expire_timeout() | aarp_send_probe() | unlock(aarp_lock) // UNLOCK!! lock(aarp_lock) // LOCK!! | msleep(100); __aarp_expire_timer(&proxies[ct]) | free(aarp_entry) | unlock(aarp_lock) // UNLOCK!! | | lock(aarp_lock) // LOCK!! | UAF aarp_entry !! ================================================================== BUG: KASAN: slab-use-after-free in aarp_proxy_probe_network+0x560/0x630 net/appletalk/aarp.c:493 Read of size 4 at addr ffff8880123aa360 by task repro/13278 CPU: 3 UID: 0 PID: 13278 Comm: repro Not tainted 6.15.2 #3 PREEMPT(full) Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x116/0x1b0 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:408 [inline] print_report+0xc1/0x630 mm/kasan/report.c:521 kasan_report+0xca/0x100 mm/kasan/report.c:634 aarp_proxy_probe_network+0x560/0x630 net/appletalk/aarp.c:493 atif_proxy_probe_device net/appletalk/ddp.c:332 [inline] atif_ioctl+0xb58/0x16c0 net/appletalk/ddp.c:857 atalk_ioctl+0x198/0x2f0 net/appletalk/ddp.c:1818 sock_do_ioctl+0xdc/0x260 net/socket.c:1190 sock_ioctl+0x239/0x6a0 net/socket.c:1311 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:906 [inline] __se_sys_ioctl fs/ioctl.c:892 [inline] __x64_sys_ioctl+0x194/0x200 fs/ioctl.c:892 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xcb/0x250 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f </TASK> Allocated: aarp_alloc net/appletalk/aarp.c:382 [inline] aarp_proxy_probe_network+0xd8/0x630 net/appletalk/aarp.c:468 atif_proxy_probe_device net/appletalk/ddp.c:332 [inline] atif_ioctl+0xb58/0x16c0 net/appletalk/ddp.c:857 atalk_ioctl+0x198/0x2f0 net/appletalk/ddp.c:1818 Freed: kfree+0x148/0x4d0 mm/slub.c:4841 __aarp_expire net/appletalk/aarp.c:90 [inline] __aarp_expire_timer net/appletalk/aarp.c:261 [inline] aarp_expire_timeout+0x480/0x6e0 net/appletalk/aarp.c:317 The buggy address belongs to the object at ffff8880123aa300 which belongs to the cache kmalloc-192 of size 192 The buggy address is located 96 bytes inside of freed 192-byte region [ffff8880123aa300, ffff8880123aa3c0) Memory state around the buggy address: ffff8880123aa200: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff8880123aa280: 00 00 00 00 fc fc fc fc fc fc fc fc fc fc fc fc >ffff8880123aa300: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff8880123aa380: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc ffff8880123aa400: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ==================================================================
CVSS Score
7.8
EPSS Score
0.0
Published
2025-08-22
In the Linux kernel, the following vulnerability has been resolved: regulator: core: fix NULL dereference on unbind due to stale coupling data Failing to reset coupling_desc.n_coupled after freeing coupled_rdevs can lead to NULL pointer dereference when regulators are accessed post-unbind. This can happen during runtime PM or other regulator operations that rely on coupling metadata. For example, on ridesx4, unbinding the 'reg-dummy' platform device triggers a panic in regulator_lock_recursive() due to stale coupling state. Ensure n_coupled is set to 0 to prevent access to invalid pointers.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-08-22
In the Linux kernel, the following vulnerability has been resolved: arm64/entry: Mask DAIF in cpu_switch_to(), call_on_irq_stack() `cpu_switch_to()` and `call_on_irq_stack()` manipulate SP to change to different stacks along with the Shadow Call Stack if it is enabled. Those two stack changes cannot be done atomically and both functions can be interrupted by SErrors or Debug Exceptions which, though unlikely, is very much broken : if interrupted, we can end up with mismatched stacks and Shadow Call Stack leading to clobbered stacks. In `cpu_switch_to()`, it can happen when SP_EL0 points to the new task, but x18 stills points to the old task's SCS. When the interrupt handler tries to save the task's SCS pointer, it will save the old task SCS pointer (x18) into the new task struct (pointed to by SP_EL0), clobbering it. In `call_on_irq_stack()`, it can happen when switching from the task stack to the IRQ stack and when switching back. In both cases, we can be interrupted when the SCS pointer points to the IRQ SCS, but SP points to the task stack. The nested interrupt handler pushes its return addresses on the IRQ SCS. It then detects that SP points to the task stack, calls `call_on_irq_stack()` and clobbers the task SCS pointer with the IRQ SCS pointer, which it will also use ! This leads to tasks returning to addresses on the wrong SCS, or even on the IRQ SCS, triggering kernel panics via CONFIG_VMAP_STACK or FPAC if enabled. This is possible on a default config, but unlikely. However, when enabling CONFIG_ARM64_PSEUDO_NMI, DAIF is unmasked and instead the GIC is responsible for filtering what interrupts the CPU should receive based on priority. Given the goal of emulating NMIs, pseudo-NMIs can be received by the CPU even in `cpu_switch_to()` and `call_on_irq_stack()`, possibly *very* frequently depending on the system configuration and workload, leading to unpredictable kernel panics. Completely mask DAIF in `cpu_switch_to()` and restore it when returning. Do the same in `call_on_irq_stack()`, but restore and mask around the branch. Mask DAIF even if CONFIG_SHADOW_CALL_STACK is not enabled for consistency of behaviour between all configurations. Introduce and use an assembly macro for saving and masking DAIF, as the existing one saves but only masks IF.
CVSS Score
7.1
EPSS Score
0.0
Published
2025-08-22
In the Linux kernel, the following vulnerability has been resolved: i2c: qup: jump out of the loop in case of timeout Original logic only sets the return value but doesn't jump out of the loop if the bus is kept active by a client. This is not expected. A malicious or buggy i2c client can hang the kernel in this case and should be avoided. This is observed during a long time test with a PCA953x GPIO extender. Fix it by changing the logic to not only sets the return value, but also jumps out of the loop and return to the caller with -ETIMEDOUT.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-08-22
In the Linux kernel, the following vulnerability has been resolved: nilfs2: reject invalid file types when reading inodes To prevent inodes with invalid file types from tripping through the vfs and causing malfunctions or assertion failures, add a missing sanity check when reading an inode from a block device. If the file type is not valid, treat it as a filesystem error.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-08-22
In the Linux kernel, the following vulnerability has been resolved: ice: Fix a null pointer dereference in ice_copy_and_init_pkg() Add check for the return value of devm_kmemdup() to prevent potential null pointer dereference.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-08-22
In the Linux kernel, the following vulnerability has been resolved: can: netlink: can_changelink(): fix NULL pointer deref of struct can_priv::do_set_mode Andrei Lalaev reported a NULL pointer deref when a CAN device is restarted from Bus Off and the driver does not implement the struct can_priv::do_set_mode callback. There are 2 code path that call struct can_priv::do_set_mode: - directly by a manual restart from the user space, via can_changelink() - delayed automatic restart after bus off (deactivated by default) To prevent the NULL pointer deference, refuse a manual restart or configure the automatic restart delay in can_changelink() and report the error via extack to user space. As an additional safety measure let can_restart() return an error if can_priv::do_set_mode is not set instead of dereferencing it unchecked.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-08-22
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to avoid out-of-boundary access in devs.path - touch /mnt/f2fs/012345678901234567890123456789012345678901234567890123 - truncate -s $((1024*1024*1024)) \ /mnt/f2fs/012345678901234567890123456789012345678901234567890123 - touch /mnt/f2fs/file - truncate -s $((1024*1024*1024)) /mnt/f2fs/file - mkfs.f2fs /mnt/f2fs/012345678901234567890123456789012345678901234567890123 \ -c /mnt/f2fs/file - mount /mnt/f2fs/012345678901234567890123456789012345678901234567890123 \ /mnt/f2fs/loop [16937.192225] F2FS-fs (loop0): Mount Device [ 0]: /mnt/f2fs/012345678901234567890123456789012345678901234567890123\xff\x01, 511, 0 - 3ffff [16937.192268] F2FS-fs (loop0): Failed to find devices If device path length equals to MAX_PATH_LEN, sbi->devs.path[] may not end up w/ null character due to path array is fully filled, So accidently, fields locate after path[] may be treated as part of device path, result in parsing wrong device path. struct f2fs_dev_info { ... char path[MAX_PATH_LEN]; ... }; Let's add one byte space for sbi->devs.path[] to store null character of device path string.
CVSS Score
7.1
EPSS Score
0.0
Published
2025-08-22
In the Linux kernel, the following vulnerability has been resolved: proc: use the same treatment to check proc_lseek as ones for proc_read_iter et.al Check pde->proc_ops->proc_lseek directly may cause UAF in rmmod scenario. It's a gap in proc_reg_open() after commit 654b33ada4ab("proc: fix UAF in proc_get_inode()"). Followed by AI Viro's suggestion, fix it in same manner.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-08-22
In the Linux kernel, the following vulnerability has been resolved: hfsplus: remove mutex_lock check in hfsplus_free_extents Syzbot reported an issue in hfsplus filesystem: ------------[ cut here ]------------ WARNING: CPU: 0 PID: 4400 at fs/hfsplus/extents.c:346 hfsplus_free_extents+0x700/0xad0 Call Trace: <TASK> hfsplus_file_truncate+0x768/0xbb0 fs/hfsplus/extents.c:606 hfsplus_write_begin+0xc2/0xd0 fs/hfsplus/inode.c:56 cont_expand_zero fs/buffer.c:2383 [inline] cont_write_begin+0x2cf/0x860 fs/buffer.c:2446 hfsplus_write_begin+0x86/0xd0 fs/hfsplus/inode.c:52 generic_cont_expand_simple+0x151/0x250 fs/buffer.c:2347 hfsplus_setattr+0x168/0x280 fs/hfsplus/inode.c:263 notify_change+0xe38/0x10f0 fs/attr.c:420 do_truncate+0x1fb/0x2e0 fs/open.c:65 do_sys_ftruncate+0x2eb/0x380 fs/open.c:193 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd To avoid deadlock, Commit 31651c607151 ("hfsplus: avoid deadlock on file truncation") unlock extree before hfsplus_free_extents(), and add check wheather extree is locked in hfsplus_free_extents(). However, when operations such as hfsplus_file_release, hfsplus_setattr, hfsplus_unlink, and hfsplus_get_block are executed concurrently in different files, it is very likely to trigger the WARN_ON, which will lead syzbot and xfstest to consider it as an abnormality. The comment above this warning also describes one of the easy triggering situations, which can easily trigger and cause xfstest&syzbot to report errors. [task A] [task B] ->hfsplus_file_release ->hfsplus_file_truncate ->hfs_find_init ->mutex_lock ->mutex_unlock ->hfsplus_write_begin ->hfsplus_get_block ->hfsplus_file_extend ->hfsplus_ext_read_extent ->hfs_find_init ->mutex_lock ->hfsplus_free_extents WARN_ON(mutex_is_locked) !!! Several threads could try to lock the shared extents tree. And warning can be triggered in one thread when another thread has locked the tree. This is the wrong behavior of the code and we need to remove the warning.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-08-22


Contact Us

Shodan ® - All rights reserved