Wind River VxWorks 6.7 though 6.9 and vx7 has a Buffer Overflow in the TCP component (issue 3 of 4). This is an IPNET security vulnerability: TCP Urgent Pointer state confusion during connect() to a remote host.
Wind River VxWorks has a Buffer Overflow in the TCP component (issue 1 of 4). This is a IPNET security vulnerability: TCP Urgent Pointer = 0 that leads to an integer underflow.
Wind River VxWorks 6.6 through vx7 has Session Fixation in the TCP component. This is a IPNET security vulnerability: DoS of TCP connection via malformed TCP options.
Wind River VxWorks 6.9.4 and vx7 has a Buffer Overflow in the TCP component (issue 4 of 4). There is an IPNET security vulnerability: TCP Urgent Pointer state confusion due to race condition.
Wind River VxWorks 6.5, 6.6, 6.7, 6.8, 6.9.3 and 6.9.4 has a Memory Leak in the IGMPv3 client component. There is an IPNET security vulnerability: IGMP Information leak via IGMPv3 specific membership report.
Wind River VxWorks 6.9 and vx7 has a Buffer Overflow in the IPv4 component. There is an IPNET security vulnerability: Stack overflow in the parsing of IPv4 packets’ IP options.
Wind River VxWorks 6.6 through 6.9 has a Buffer Overflow in the DHCP client component. There is an IPNET security vulnerability: Heap overflow in DHCP Offer/ACK parsing inside ipdhcpc.
In the Linux kernel before 5.1.17, ptrace_link in kernel/ptrace.c mishandles the recording of the credentials of a process that wants to create a ptrace relationship, which allows local users to obtain root access by leveraging certain scenarios with a parent-child process relationship, where a parent drops privileges and calls execve (potentially allowing control by an attacker). One contributing factor is an object lifetime issue (which can also cause a panic). Another contributing factor is incorrect marking of a ptrace relationship as privileged, which is exploitable through (for example) Polkit's pkexec helper with PTRACE_TRACEME. NOTE: SELinux deny_ptrace might be a usable workaround in some environments.
In libssh2 before 1.9.0, kex_method_diffie_hellman_group_exchange_sha256_key_exchange in kex.c has an integer overflow that could lead to an out-of-bounds read in the way packets are read from the server. A remote attacker who compromises a SSH server may be able to disclose sensitive information or cause a denial of service condition on the client system when a user connects to the server. This is related to an _libssh2_check_length mistake, and is different from the various issues fixed in 1.8.1, such as CVE-2019-3855.
In numbers.c in libxslt 1.1.33, a type holding grouping characters of an xsl:number instruction was too narrow and an invalid character/length combination could be passed to xsltNumberFormatDecimal, leading to a read of uninitialized stack data.