Security Vulnerabilities
- CVEs Published In 2024
In the Linux kernel, the following vulnerability has been resolved:
drm/i915: Fix NULL pointer dereference in capture_engine
When the intel_context structure contains NULL,
it raises a NULL pointer dereference error in drm_info().
(cherry picked from commit 754302a5bc1bd8fd3b7d85c168b0a1af6d4bba4d)
In the Linux kernel, the following vulnerability has been resolved:
iommu/vt-d: Fix qi_batch NULL pointer with nested parent domain
The qi_batch is allocated when assigning cache tag for a domain. While
for nested parent domain, it is missed. Hence, when trying to map pages
to the nested parent, NULL dereference occurred. Also, there is potential
memleak since there is no lock around domain->qi_batch allocation.
To solve it, add a helper for qi_batch allocation, and call it in both
the __cache_tag_assign_domain() and __cache_tag_assign_parent_domain().
BUG: kernel NULL pointer dereference, address: 0000000000000200
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 8104795067 P4D 0
Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 223 UID: 0 PID: 4357 Comm: qemu-system-x86 Not tainted 6.13.0-rc1-00028-g4b50c3c3b998-dirty #2632
Call Trace:
? __die+0x24/0x70
? page_fault_oops+0x80/0x150
? do_user_addr_fault+0x63/0x7b0
? exc_page_fault+0x7c/0x220
? asm_exc_page_fault+0x26/0x30
? cache_tag_flush_range_np+0x13c/0x260
intel_iommu_iotlb_sync_map+0x1a/0x30
iommu_map+0x61/0xf0
batch_to_domain+0x188/0x250
iopt_area_fill_domains+0x125/0x320
? rcu_is_watching+0x11/0x50
iopt_map_pages+0x63/0x100
iopt_map_common.isra.0+0xa7/0x190
iopt_map_user_pages+0x6a/0x80
iommufd_ioas_map+0xcd/0x1d0
iommufd_fops_ioctl+0x118/0x1c0
__x64_sys_ioctl+0x93/0xc0
do_syscall_64+0x71/0x140
entry_SYSCALL_64_after_hwframe+0x76/0x7e
In the Linux kernel, the following vulnerability has been resolved:
iommu/vt-d: Remove cache tags before disabling ATS
The current implementation removes cache tags after disabling ATS,
leading to potential memory leaks and kernel crashes. Specifically,
CACHE_TAG_DEVTLB type cache tags may still remain in the list even
after the domain is freed, causing a use-after-free condition.
This issue really shows up when multiple VFs from different PFs
passed through to a single user-space process via vfio-pci. In such
cases, the kernel may crash with kernel messages like:
BUG: kernel NULL pointer dereference, address: 0000000000000014
PGD 19036a067 P4D 1940a3067 PUD 136c9b067 PMD 0
Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 74 UID: 0 PID: 3183 Comm: testCli Not tainted 6.11.9 #2
RIP: 0010:cache_tag_flush_range+0x9b/0x250
Call Trace:
<TASK>
? __die+0x1f/0x60
? page_fault_oops+0x163/0x590
? exc_page_fault+0x72/0x190
? asm_exc_page_fault+0x22/0x30
? cache_tag_flush_range+0x9b/0x250
? cache_tag_flush_range+0x5d/0x250
intel_iommu_tlb_sync+0x29/0x40
intel_iommu_unmap_pages+0xfe/0x160
__iommu_unmap+0xd8/0x1a0
vfio_unmap_unpin+0x182/0x340 [vfio_iommu_type1]
vfio_remove_dma+0x2a/0xb0 [vfio_iommu_type1]
vfio_iommu_type1_ioctl+0xafa/0x18e0 [vfio_iommu_type1]
Move cache_tag_unassign_domain() before iommu_disable_pci_caps() to fix
it.
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: u_serial: Fix the issue that gs_start_io crashed due to accessing null pointer
Considering that in some extreme cases,
when u_serial driver is accessed by multiple threads,
Thread A is executing the open operation and calling the gs_open,
Thread B is executing the disconnect operation and calling the
gserial_disconnect function,The port->port_usb pointer will be set to NULL.
E.g.
Thread A Thread B
gs_open() gadget_unbind_driver()
gs_start_io() composite_disconnect()
gs_start_rx() gserial_disconnect()
... ...
spin_unlock(&port->port_lock)
status = usb_ep_queue() spin_lock(&port->port_lock)
spin_lock(&port->port_lock) port->port_usb = NULL
gs_free_requests(port->port_usb->in) spin_unlock(&port->port_lock)
Crash
This causes thread A to access a null pointer (port->port_usb is null)
when calling the gs_free_requests function, causing a crash.
If port_usb is NULL, the release request will be skipped as it
will be done by gserial_disconnect.
So add a null pointer check to gs_start_io before attempting
to access the value of the pointer port->port_usb.
Call trace:
gs_start_io+0x164/0x25c
gs_open+0x108/0x13c
tty_open+0x314/0x638
chrdev_open+0x1b8/0x258
do_dentry_open+0x2c4/0x700
vfs_open+0x2c/0x3c
path_openat+0xa64/0xc60
do_filp_open+0xb8/0x164
do_sys_openat2+0x84/0xf0
__arm64_sys_openat+0x70/0x9c
invoke_syscall+0x58/0x114
el0_svc_common+0x80/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x38/0x68
In the Linux kernel, the following vulnerability has been resolved:
gpio: graniterapids: Fix vGPIO driver crash
Move setting irq_chip.name from probe() function to the initialization
of "irq_chip" struct in order to fix vGPIO driver crash during bootup.
Crash was caused by unauthorized modification of irq_chip.name field
where irq_chip struct was initialized as const.
This behavior is a consequence of suboptimal implementation of
gpio_irq_chip_set_chip(), which should be changed to avoid
casting away const qualifier.
Crash log:
BUG: unable to handle page fault for address: ffffffffc0ba81c0
/#PF: supervisor write access in kernel mode
/#PF: error_code(0x0003) - permissions violation
CPU: 33 UID: 0 PID: 1075 Comm: systemd-udevd Not tainted 6.12.0-rc6-00077-g2e1b3cc9d7f7 #1
Hardware name: Intel Corporation Kaseyville RP/Kaseyville RP, BIOS KVLDCRB1.PGS.0026.D73.2410081258 10/08/2024
RIP: 0010:gnr_gpio_probe+0x171/0x220 [gpio_graniterapids]
In the Linux kernel, the following vulnerability has been resolved:
drm/xe/reg_sr: Remove register pool
That pool implementation doesn't really work: if the krealloc happens to
move the memory and return another address, the entries in the xarray
become invalid, leading to use-after-free later:
BUG: KASAN: slab-use-after-free in xe_reg_sr_apply_mmio+0x570/0x760 [xe]
Read of size 4 at addr ffff8881244b2590 by task modprobe/2753
Allocated by task 2753:
kasan_save_stack+0x39/0x70
kasan_save_track+0x14/0x40
kasan_save_alloc_info+0x37/0x60
__kasan_kmalloc+0xc3/0xd0
__kmalloc_node_track_caller_noprof+0x200/0x6d0
krealloc_noprof+0x229/0x380
Simplify the code to fix the bug. A better pooling strategy may be added
back later if needed.
(cherry picked from commit e5283bd4dfecbd3335f43b62a68e24dae23f59e4)
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btmtk: avoid UAF in btmtk_process_coredump
hci_devcd_append may lead to the release of the skb, so it cannot be
accessed once it is called.
==================================================================
BUG: KASAN: slab-use-after-free in btmtk_process_coredump+0x2a7/0x2d0 [btmtk]
Read of size 4 at addr ffff888033cfabb0 by task kworker/0:3/82
CPU: 0 PID: 82 Comm: kworker/0:3 Tainted: G U 6.6.40-lockdep-03464-g1d8b4eb3060e #1 b0b3c1cc0c842735643fb411799d97921d1f688c
Hardware name: Google Yaviks_Ufs/Yaviks_Ufs, BIOS Google_Yaviks_Ufs.15217.552.0 05/07/2024
Workqueue: events btusb_rx_work [btusb]
Call Trace:
<TASK>
dump_stack_lvl+0xfd/0x150
print_report+0x131/0x780
kasan_report+0x177/0x1c0
btmtk_process_coredump+0x2a7/0x2d0 [btmtk 03edd567dd71a65958807c95a65db31d433e1d01]
btusb_recv_acl_mtk+0x11c/0x1a0 [btusb 675430d1e87c4f24d0c1f80efe600757a0f32bec]
btusb_rx_work+0x9e/0xe0 [btusb 675430d1e87c4f24d0c1f80efe600757a0f32bec]
worker_thread+0xe44/0x2cc0
kthread+0x2ff/0x3a0
ret_from_fork+0x51/0x80
ret_from_fork_asm+0x1b/0x30
</TASK>
Allocated by task 82:
stack_trace_save+0xdc/0x190
kasan_set_track+0x4e/0x80
__kasan_slab_alloc+0x4e/0x60
kmem_cache_alloc+0x19f/0x360
skb_clone+0x132/0xf70
btusb_recv_acl_mtk+0x104/0x1a0 [btusb]
btusb_rx_work+0x9e/0xe0 [btusb]
worker_thread+0xe44/0x2cc0
kthread+0x2ff/0x3a0
ret_from_fork+0x51/0x80
ret_from_fork_asm+0x1b/0x30
Freed by task 1733:
stack_trace_save+0xdc/0x190
kasan_set_track+0x4e/0x80
kasan_save_free_info+0x28/0xb0
____kasan_slab_free+0xfd/0x170
kmem_cache_free+0x183/0x3f0
hci_devcd_rx+0x91a/0x2060 [bluetooth]
worker_thread+0xe44/0x2cc0
kthread+0x2ff/0x3a0
ret_from_fork+0x51/0x80
ret_from_fork_asm+0x1b/0x30
The buggy address belongs to the object at ffff888033cfab40
which belongs to the cache skbuff_head_cache of size 232
The buggy address is located 112 bytes inside of
freed 232-byte region [ffff888033cfab40, ffff888033cfac28)
The buggy address belongs to the physical page:
page:00000000a174ba93 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x33cfa
head:00000000a174ba93 order:1 entire_mapcount:0 nr_pages_mapped:0 pincount:0
anon flags: 0x4000000000000840(slab|head|zone=1)
page_type: 0xffffffff()
raw: 4000000000000840 ffff888100848a00 0000000000000000 0000000000000001
raw: 0000000000000000 0000000080190019 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff888033cfaa80: fb fb fb fb fb fb fb fb fb fb fb fb fb fc fc fc
ffff888033cfab00: fc fc fc fc fc fc fc fc fa fb fb fb fb fb fb fb
>ffff888033cfab80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff888033cfac00: fb fb fb fb fb fc fc fc fc fc fc fc fc fc fc fc
ffff888033cfac80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
==================================================================
Check if we need to call hci_devcd_complete before calling
hci_devcd_append. That requires that we check data->cd_info.cnt >=
MTK_COREDUMP_NUM instead of data->cd_info.cnt > MTK_COREDUMP_NUM, as we
increment data->cd_info.cnt only once the call to hci_devcd_append
succeeds.
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_event: Fix using rcu_read_(un)lock while iterating
The usage of rcu_read_(un)lock while inside list_for_each_entry_rcu is
not safe since for the most part entries fetched this way shall be
treated as rcu_dereference:
Note that the value returned by rcu_dereference() is valid
only within the enclosing RCU read-side critical section [1]_.
For example, the following is **not** legal::
rcu_read_lock();
p = rcu_dereference(head.next);
rcu_read_unlock();
x = p->address; /* BUG!!! */
rcu_read_lock();
y = p->data; /* BUG!!! */
rcu_read_unlock();
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: do not defer rule destruction via call_rcu
nf_tables_chain_destroy can sleep, it can't be used from call_rcu
callbacks.
Moreover, nf_tables_rule_release() is only safe for error unwinding,
while transaction mutex is held and the to-be-desroyed rule was not
exposed to either dataplane or dumps, as it deactives+frees without
the required synchronize_rcu() in-between.
nft_rule_expr_deactivate() callbacks will change ->use counters
of other chains/sets, see e.g. nft_lookup .deactivate callback, these
must be serialized via transaction mutex.
Also add a few lockdep asserts to make this more explicit.
Calling synchronize_rcu() isn't ideal, but fixing this without is hard
and way more intrusive. As-is, we can get:
WARNING: .. net/netfilter/nf_tables_api.c:5515 nft_set_destroy+0x..
Workqueue: events nf_tables_trans_destroy_work
RIP: 0010:nft_set_destroy+0x3fe/0x5c0
Call Trace:
<TASK>
nf_tables_trans_destroy_work+0x6b7/0xad0
process_one_work+0x64a/0xce0
worker_thread+0x613/0x10d0
In case the synchronize_rcu becomes an issue, we can explore alternatives.
One way would be to allocate nft_trans_rule objects + one nft_trans_chain
object, deactivate the rules + the chain and then defer the freeing to the
nft destroy workqueue. We'd still need to keep the synchronize_rcu path as
a fallback to handle -ENOMEM corner cases though.
In the Linux kernel, the following vulnerability has been resolved:
bnxt_en: Fix aggregation ID mask to prevent oops on 5760X chips
The 5760X (P7) chip's HW GRO/LRO interface is very similar to that of
the previous generation (5750X or P5). However, the aggregation ID
fields in the completion structures on P7 have been redefined from
16 bits to 12 bits. The freed up 4 bits are redefined for part of the
metadata such as the VLAN ID. The aggregation ID mask was not modified
when adding support for P7 chips. Including the extra 4 bits for the
aggregation ID can potentially cause the driver to store or fetch the
packet header of GRO/LRO packets in the wrong TPA buffer. It may hit
the BUG() condition in __skb_pull() because the SKB contains no valid
packet header:
kernel BUG at include/linux/skbuff.h:2766!
Oops: invalid opcode: 0000 1 PREEMPT SMP NOPTI
CPU: 4 UID: 0 PID: 0 Comm: swapper/4 Kdump: loaded Tainted: G OE 6.12.0-rc2+ #7
Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
Hardware name: Dell Inc. PowerEdge R760/0VRV9X, BIOS 1.0.1 12/27/2022
RIP: 0010:eth_type_trans+0xda/0x140
Code: 80 00 00 00 eb c1 8b 47 70 2b 47 74 48 8b 97 d0 00 00 00 83 f8 01 7e 1b 48 85 d2 74 06 66 83 3a ff 74 09 b8 00 04 00 00 eb a5 <0f> 0b b8 00 01 00 00 eb 9c 48 85 ff 74 eb 31 f6 b9 02 00 00 00 48
RSP: 0018:ff615003803fcc28 EFLAGS: 00010283
RAX: 00000000000022d2 RBX: 0000000000000003 RCX: ff2e8c25da334040
RDX: 0000000000000040 RSI: ff2e8c25c1ce8000 RDI: ff2e8c25869f9000
RBP: ff2e8c258c31c000 R08: ff2e8c25da334000 R09: 0000000000000001
R10: ff2e8c25da3342c0 R11: ff2e8c25c1ce89c0 R12: ff2e8c258e0990b0
R13: ff2e8c25bb120000 R14: ff2e8c25c1ce89c0 R15: ff2e8c25869f9000
FS: 0000000000000000(0000) GS:ff2e8c34be300000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055f05317e4c8 CR3: 000000108bac6006 CR4: 0000000000773ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe07f0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<IRQ>
? die+0x33/0x90
? do_trap+0xd9/0x100
? eth_type_trans+0xda/0x140
? do_error_trap+0x65/0x80
? eth_type_trans+0xda/0x140
? exc_invalid_op+0x4e/0x70
? eth_type_trans+0xda/0x140
? asm_exc_invalid_op+0x16/0x20
? eth_type_trans+0xda/0x140
bnxt_tpa_end+0x10b/0x6b0 [bnxt_en]
? bnxt_tpa_start+0x195/0x320 [bnxt_en]
bnxt_rx_pkt+0x902/0xd90 [bnxt_en]
? __bnxt_tx_int.constprop.0+0x89/0x300 [bnxt_en]
? kmem_cache_free+0x343/0x440
? __bnxt_tx_int.constprop.0+0x24f/0x300 [bnxt_en]
__bnxt_poll_work+0x193/0x370 [bnxt_en]
bnxt_poll_p5+0x9a/0x300 [bnxt_en]
? try_to_wake_up+0x209/0x670
__napi_poll+0x29/0x1b0
Fix it by redefining the aggregation ID mask for P5_PLUS chips to be
12 bits. This will work because the maximum aggregation ID is less
than 4096 on all P5_PLUS chips.