In the Linux kernel, the following vulnerability has been resolved:
fbcon: Make sure modelist not set on unregistered console
It looks like attempting to write to the "store_modes" sysfs node will
run afoul of unregistered consoles:
UBSAN: array-index-out-of-bounds in drivers/video/fbdev/core/fbcon.c:122:28
index -1 is out of range for type 'fb_info *[32]'
...
fbcon_info_from_console+0x192/0x1a0 drivers/video/fbdev/core/fbcon.c:122
fbcon_new_modelist+0xbf/0x2d0 drivers/video/fbdev/core/fbcon.c:3048
fb_new_modelist+0x328/0x440 drivers/video/fbdev/core/fbmem.c:673
store_modes+0x1c9/0x3e0 drivers/video/fbdev/core/fbsysfs.c:113
dev_attr_store+0x55/0x80 drivers/base/core.c:2439
static struct fb_info *fbcon_registered_fb[FB_MAX];
...
static signed char con2fb_map[MAX_NR_CONSOLES];
...
static struct fb_info *fbcon_info_from_console(int console)
...
return fbcon_registered_fb[con2fb_map[console]];
If con2fb_map contains a -1 things go wrong here. Instead, return NULL,
as callers of fbcon_info_from_console() are trying to compare against
existing "info" pointers, so error handling should kick in correctly.
In the Linux kernel, the following vulnerability has been resolved:
atm: Revert atm_account_tx() if copy_from_iter_full() fails.
In vcc_sendmsg(), we account skb->truesize to sk->sk_wmem_alloc by
atm_account_tx().
It is expected to be reverted by atm_pop_raw() later called by
vcc->dev->ops->send(vcc, skb).
However, vcc_sendmsg() misses the same revert when copy_from_iter_full()
fails, and then we will leak a socket.
Let's factorise the revert part as atm_return_tx() and call it in
the failure path.
Note that the corresponding sk_wmem_alloc operation can be found in
alloc_tx() as of the blamed commit.
$ git blame -L:alloc_tx net/atm/common.c c55fa3cccbc2c~
In the Linux kernel, the following vulnerability has been resolved:
net_sched: sch_sfq: reject invalid perturb period
Gerrard Tai reported that SFQ perturb_period has no range check yet,
and this can be used to trigger a race condition fixed in a separate patch.
We want to make sure ctl->perturb_period * HZ will not overflow
and is positive.
tc qd add dev lo root sfq perturb -10 # negative value : error
Error: sch_sfq: invalid perturb period.
tc qd add dev lo root sfq perturb 1000000000 # too big : error
Error: sch_sfq: invalid perturb period.
tc qd add dev lo root sfq perturb 2000000 # acceptable value
tc -s -d qd sh dev lo
qdisc sfq 8005: root refcnt 2 limit 127p quantum 64Kb depth 127 flows 128 divisor 1024 perturb 2000000sec
Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0)
backlog 0b 0p requeues 0
In the Linux kernel, the following vulnerability has been resolved:
jffs2: check that raw node were preallocated before writing summary
Syzkaller detected a kernel bug in jffs2_link_node_ref, caused by fault
injection in jffs2_prealloc_raw_node_refs. jffs2_sum_write_sumnode doesn't
check return value of jffs2_prealloc_raw_node_refs and simply lets any
error propagate into jffs2_sum_write_data, which eventually calls
jffs2_link_node_ref in order to link the summary to an expectedly allocated
node.
kernel BUG at fs/jffs2/nodelist.c:592!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN NOPTI
CPU: 1 PID: 31277 Comm: syz-executor.7 Not tainted 6.1.128-syzkaller-00139-ge10f83ca10a1 #0
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
RIP: 0010:jffs2_link_node_ref+0x570/0x690 fs/jffs2/nodelist.c:592
Call Trace:
<TASK>
jffs2_sum_write_data fs/jffs2/summary.c:841 [inline]
jffs2_sum_write_sumnode+0xd1a/0x1da0 fs/jffs2/summary.c:874
jffs2_do_reserve_space+0xa18/0xd60 fs/jffs2/nodemgmt.c:388
jffs2_reserve_space+0x55f/0xaa0 fs/jffs2/nodemgmt.c:197
jffs2_write_inode_range+0x246/0xb50 fs/jffs2/write.c:362
jffs2_write_end+0x726/0x15d0 fs/jffs2/file.c:301
generic_perform_write+0x314/0x5d0 mm/filemap.c:3856
__generic_file_write_iter+0x2ae/0x4d0 mm/filemap.c:3973
generic_file_write_iter+0xe3/0x350 mm/filemap.c:4005
call_write_iter include/linux/fs.h:2265 [inline]
do_iter_readv_writev+0x20f/0x3c0 fs/read_write.c:735
do_iter_write+0x186/0x710 fs/read_write.c:861
vfs_iter_write+0x70/0xa0 fs/read_write.c:902
iter_file_splice_write+0x73b/0xc90 fs/splice.c:685
do_splice_from fs/splice.c:763 [inline]
direct_splice_actor+0x10c/0x170 fs/splice.c:950
splice_direct_to_actor+0x337/0xa10 fs/splice.c:896
do_splice_direct+0x1a9/0x280 fs/splice.c:1002
do_sendfile+0xb13/0x12c0 fs/read_write.c:1255
__do_sys_sendfile64 fs/read_write.c:1323 [inline]
__se_sys_sendfile64 fs/read_write.c:1309 [inline]
__x64_sys_sendfile64+0x1cf/0x210 fs/read_write.c:1309
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x35/0x80 arch/x86/entry/common.c:81
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
Fix this issue by checking return value of jffs2_prealloc_raw_node_refs
before calling jffs2_sum_write_data.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
In the Linux kernel, the following vulnerability has been resolved:
atm: atmtcp: Free invalid length skb in atmtcp_c_send().
syzbot reported the splat below. [0]
vcc_sendmsg() copies data passed from userspace to skb and passes
it to vcc->dev->ops->send().
atmtcp_c_send() accesses skb->data as struct atmtcp_hdr after
checking if skb->len is 0, but it's not enough.
Also, when skb->len == 0, skb and sk (vcc) were leaked because
dev_kfree_skb() is not called and sk_wmem_alloc adjustment is missing
to revert atm_account_tx() in vcc_sendmsg(), which is expected
to be done in atm_pop_raw().
Let's properly free skb with an invalid length in atmtcp_c_send().
[0]:
BUG: KMSAN: uninit-value in atmtcp_c_send+0x255/0xed0 drivers/atm/atmtcp.c:294
atmtcp_c_send+0x255/0xed0 drivers/atm/atmtcp.c:294
vcc_sendmsg+0xd7c/0xff0 net/atm/common.c:644
sock_sendmsg_nosec net/socket.c:712 [inline]
__sock_sendmsg+0x330/0x3d0 net/socket.c:727
____sys_sendmsg+0x7e0/0xd80 net/socket.c:2566
___sys_sendmsg+0x271/0x3b0 net/socket.c:2620
__sys_sendmsg net/socket.c:2652 [inline]
__do_sys_sendmsg net/socket.c:2657 [inline]
__se_sys_sendmsg net/socket.c:2655 [inline]
__x64_sys_sendmsg+0x211/0x3e0 net/socket.c:2655
x64_sys_call+0x32fb/0x3db0 arch/x86/include/generated/asm/syscalls_64.h:47
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xd9/0x210 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Uninit was created at:
slab_post_alloc_hook mm/slub.c:4154 [inline]
slab_alloc_node mm/slub.c:4197 [inline]
kmem_cache_alloc_node_noprof+0x818/0xf00 mm/slub.c:4249
kmalloc_reserve+0x13c/0x4b0 net/core/skbuff.c:579
__alloc_skb+0x347/0x7d0 net/core/skbuff.c:670
alloc_skb include/linux/skbuff.h:1336 [inline]
vcc_sendmsg+0xb40/0xff0 net/atm/common.c:628
sock_sendmsg_nosec net/socket.c:712 [inline]
__sock_sendmsg+0x330/0x3d0 net/socket.c:727
____sys_sendmsg+0x7e0/0xd80 net/socket.c:2566
___sys_sendmsg+0x271/0x3b0 net/socket.c:2620
__sys_sendmsg net/socket.c:2652 [inline]
__do_sys_sendmsg net/socket.c:2657 [inline]
__se_sys_sendmsg net/socket.c:2655 [inline]
__x64_sys_sendmsg+0x211/0x3e0 net/socket.c:2655
x64_sys_call+0x32fb/0x3db0 arch/x86/include/generated/asm/syscalls_64.h:47
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xd9/0x210 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
CPU: 1 UID: 0 PID: 5798 Comm: syz-executor192 Not tainted 6.16.0-rc1-syzkaller-00010-g2c4a1f3fe03e #0 PREEMPT(undef)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/07/2025
In the Linux kernel, the following vulnerability has been resolved:
net: atm: fix /proc/net/atm/lec handling
/proc/net/atm/lec must ensure safety against dev_lec[] changes.
It appears it had dev_put() calls without prior dev_hold(),
leading to imbalance and UAF.
In the Linux kernel, the following vulnerability has been resolved:
sch_hfsc: make hfsc_qlen_notify() idempotent
hfsc_qlen_notify() is not idempotent either and not friendly
to its callers, like fq_codel_dequeue(). Let's make it idempotent
to ease qdisc_tree_reduce_backlog() callers' life:
1. update_vf() decreases cl->cl_nactive, so we can check whether it is
non-zero before calling it.
2. eltree_remove() always removes RB node cl->el_node, but we can use
RB_EMPTY_NODE() + RB_CLEAR_NODE() to make it safe.
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Disable SCO support if READ_VOICE_SETTING is unsupported/broken
A SCO connection without the proper voice_setting can cause
the controller to lock up.
In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Kill timer properly at removal
The USB-audio MIDI code initializes the timer, but in a rare case, the
driver might be freed without the disconnect call. This leaves the
timer in an active state while the assigned object is released via
snd_usbmidi_free(), which ends up with a kernel warning when the debug
configuration is enabled, as spotted by fuzzer.
For avoiding the problem, put timer_shutdown_sync() at
snd_usbmidi_free(), so that the timer can be killed properly.
While we're at it, replace the existing timer_delete_sync() at the
disconnect callback with timer_shutdown_sync(), too.
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: don't warn when if there is a FW error
iwl_trans_reclaim is warning if it is called when the FW is not alive.
But if it is called when there is a pending restart, i.e. after a FW
error, there is no need to warn, instead - return silently.