In the Linux kernel, the following vulnerability has been resolved:
wifi: zd1211rw: Fix potential NULL pointer dereference in zd_mac_tx_to_dev()
There is a potential NULL pointer dereference in zd_mac_tx_to_dev(). For
example, the following is possible:
T0 T1
zd_mac_tx_to_dev()
/* len == skb_queue_len(q) */
while (len > ZD_MAC_MAX_ACK_WAITERS) {
filter_ack()
spin_lock_irqsave(&q->lock, flags);
/* position == skb_queue_len(q) */
for (i=1; i<position; i++)
skb = __skb_dequeue(q)
if (mac->type == NL80211_IFTYPE_AP)
skb = __skb_dequeue(q);
spin_unlock_irqrestore(&q->lock, flags);
skb_dequeue() -> NULL
Since there is a small gap between checking skb queue length and skb being
unconditionally dequeued in zd_mac_tx_to_dev(), skb_dequeue() can return NULL.
Then the pointer is passed to zd_mac_tx_status() where it is dereferenced.
In order to avoid potential NULL pointer dereference due to situations like
above, check if skb is not NULL before passing it to zd_mac_tx_status().
Found by Linux Verification Center (linuxtesting.org) with SVACE.
In the Linux kernel, the following vulnerability has been resolved:
do_change_type(): refuse to operate on unmounted/not ours mounts
Ensure that propagation settings can only be changed for mounts located
in the caller's mount namespace. This change aligns permission checking
with the rest of mount(2).
In the Linux kernel, the following vulnerability has been resolved:
comedi: Fix initialization of data for instructions that write to subdevice
Some Comedi subdevice instruction handlers are known to access
instruction data elements beyond the first `insn->n` elements in some
cases. The `do_insn_ioctl()` and `do_insnlist_ioctl()` functions
allocate at least `MIN_SAMPLES` (16) data elements to deal with this,
but they do not initialize all of that. For Comedi instruction codes
that write to the subdevice, the first `insn->n` data elements are
copied from user-space, but the remaining elements are left
uninitialized. That could be a problem if the subdevice instruction
handler reads the uninitialized data. Ensure that the first
`MIN_SAMPLES` elements are initialized before calling these instruction
handlers, filling the uncopied elements with 0. For
`do_insnlist_ioctl()`, the same data buffer elements are used for
handling a list of instructions, so ensure the first `MIN_SAMPLES`
elements are initialized for each instruction that writes to the
subdevice.
In the Linux kernel, the following vulnerability has been resolved:
comedi: Fix use of uninitialized data in insn_rw_emulate_bits()
For Comedi `INSN_READ` and `INSN_WRITE` instructions on "digital"
subdevices (subdevice types `COMEDI_SUBD_DI`, `COMEDI_SUBD_DO`, and
`COMEDI_SUBD_DIO`), it is common for the subdevice driver not to have
`insn_read` and `insn_write` handler functions, but to have an
`insn_bits` handler function for handling Comedi `INSN_BITS`
instructions. In that case, the subdevice's `insn_read` and/or
`insn_write` function handler pointers are set to point to the
`insn_rw_emulate_bits()` function by `__comedi_device_postconfig()`.
For `INSN_WRITE`, `insn_rw_emulate_bits()` currently assumes that the
supplied `data[0]` value is a valid copy from user memory. It will at
least exist because `do_insnlist_ioctl()` and `do_insn_ioctl()` in
"comedi_fops.c" ensure at lease `MIN_SAMPLES` (16) elements are
allocated. However, if `insn->n` is 0 (which is allowable for
`INSN_READ` and `INSN_WRITE` instructions, then `data[0]` may contain
uninitialized data, and certainly contains invalid data, possibly from a
different instruction in the array of instructions handled by
`do_insnlist_ioctl()`. This will result in an incorrect value being
written to the digital output channel (or to the digital input/output
channel if configured as an output), and may be reflected in the
internal saved state of the channel.
Fix it by returning 0 early if `insn->n` is 0, before reaching the code
that accesses `data[0]`. Previously, the function always returned 1 on
success, but it is supposed to be the number of data samples actually
read or written up to `insn->n`, which is 0 in this case.
In the Linux kernel, the following vulnerability has been resolved:
comedi: Fail COMEDI_INSNLIST ioctl if n_insns is too large
The handling of the `COMEDI_INSNLIST` ioctl allocates a kernel buffer to
hold the array of `struct comedi_insn`, getting the length from the
`n_insns` member of the `struct comedi_insnlist` supplied by the user.
The allocation will fail with a WARNING and a stack dump if it is too
large.
Avoid that by failing with an `-EINVAL` error if the supplied `n_insns`
value is unreasonable.
Define the limit on the `n_insns` value in the `MAX_INSNS` macro. Set
this to the same value as `MAX_SAMPLES` (65536), which is the maximum
allowed sum of the values of the member `n` in the array of `struct
comedi_insn`, and sensible comedi instructions will have an `n` of at
least 1.
In the Linux kernel, the following vulnerability has been resolved:
net/sched: Return NULL when htb_lookup_leaf encounters an empty rbtree
htb_lookup_leaf has a BUG_ON that can trigger with the following:
tc qdisc del dev lo root
tc qdisc add dev lo root handle 1: htb default 1
tc class add dev lo parent 1: classid 1:1 htb rate 64bit
tc qdisc add dev lo parent 1:1 handle 2: netem
tc qdisc add dev lo parent 2:1 handle 3: blackhole
ping -I lo -c1 -W0.001 127.0.0.1
The root cause is the following:
1. htb_dequeue calls htb_dequeue_tree which calls the dequeue handler on
the selected leaf qdisc
2. netem_dequeue calls enqueue on the child qdisc
3. blackhole_enqueue drops the packet and returns a value that is not
just NET_XMIT_SUCCESS
4. Because of this, netem_dequeue calls qdisc_tree_reduce_backlog, and
since qlen is now 0, it calls htb_qlen_notify -> htb_deactivate ->
htb_deactiviate_prios -> htb_remove_class_from_row -> htb_safe_rb_erase
5. As this is the only class in the selected hprio rbtree,
__rb_change_child in __rb_erase_augmented sets the rb_root pointer to
NULL
6. Because blackhole_dequeue returns NULL, netem_dequeue returns NULL,
which causes htb_dequeue_tree to call htb_lookup_leaf with the same
hprio rbtree, and fail the BUG_ON
The function graph for this scenario is shown here:
0) | htb_enqueue() {
0) + 13.635 us | netem_enqueue();
0) 4.719 us | htb_activate_prios();
0) # 2249.199 us | }
0) | htb_dequeue() {
0) 2.355 us | htb_lookup_leaf();
0) | netem_dequeue() {
0) + 11.061 us | blackhole_enqueue();
0) | qdisc_tree_reduce_backlog() {
0) | qdisc_lookup_rcu() {
0) 1.873 us | qdisc_match_from_root();
0) 6.292 us | }
0) 1.894 us | htb_search();
0) | htb_qlen_notify() {
0) 2.655 us | htb_deactivate_prios();
0) 6.933 us | }
0) + 25.227 us | }
0) 1.983 us | blackhole_dequeue();
0) + 86.553 us | }
0) # 2932.761 us | qdisc_warn_nonwc();
0) | htb_lookup_leaf() {
0) | BUG_ON();
------------------------------------------
The full original bug report can be seen here [1].
We can fix this just by returning NULL instead of the BUG_ON,
as htb_dequeue_tree returns NULL when htb_lookup_leaf returns
NULL.
[1] https://lore.kernel.org/netdev/pF5XOOIim0IuEfhI-SOxTgRvNoDwuux7UHKnE_Y5-zVd4wmGvNk2ceHjKb8ORnzw0cGwfmVu42g9dL7XyJLf1NEzaztboTWcm0Ogxuojoeo=@willsroot.io/
In the Linux kernel, the following vulnerability has been resolved:
netlink: Fix wraparounds of sk->sk_rmem_alloc.
Netlink has this pattern in some places
if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
atomic_add(skb->truesize, &sk->sk_rmem_alloc);
, which has the same problem fixed by commit 5a465a0da13e ("udp:
Fix multiple wraparounds of sk->sk_rmem_alloc.").
For example, if we set INT_MAX to SO_RCVBUFFORCE, the condition
is always false as the two operands are of int.
Then, a single socket can eat as many skb as possible until OOM
happens, and we can see multiple wraparounds of sk->sk_rmem_alloc.
Let's fix it by using atomic_add_return() and comparing the two
variables as unsigned int.
Before:
[root@fedora ~]# ss -f netlink
Recv-Q Send-Q Local Address:Port Peer Address:Port
-1668710080 0 rtnl:nl_wraparound/293 *
After:
[root@fedora ~]# ss -f netlink
Recv-Q Send-Q Local Address:Port Peer Address:Port
2147483072 0 rtnl:nl_wraparound/290 *
^
`--- INT_MAX - 576
In the Linux kernel, the following vulnerability has been resolved:
net/sched: Abort __tc_modify_qdisc if parent class does not exist
Lion's patch [1] revealed an ancient bug in the qdisc API.
Whenever a user creates/modifies a qdisc specifying as a parent another
qdisc, the qdisc API will, during grafting, detect that the user is
not trying to attach to a class and reject. However grafting is
performed after qdisc_create (and thus the qdiscs' init callback) is
executed. In qdiscs that eventually call qdisc_tree_reduce_backlog
during init or change (such as fq, hhf, choke, etc), an issue
arises. For example, executing the following commands:
sudo tc qdisc add dev lo root handle a: htb default 2
sudo tc qdisc add dev lo parent a: handle beef fq
Qdiscs such as fq, hhf, choke, etc unconditionally invoke
qdisc_tree_reduce_backlog() in their control path init() or change() which
then causes a failure to find the child class; however, that does not stop
the unconditional invocation of the assumed child qdisc's qlen_notify with
a null class. All these qdiscs make the assumption that class is non-null.
The solution is ensure that qdisc_leaf() which looks up the parent
class, and is invoked prior to qdisc_create(), should return failure on
not finding the class.
In this patch, we leverage qdisc_leaf to return ERR_PTRs whenever the
parentid doesn't correspond to a class, so that we can detect it
earlier on and abort before qdisc_create is called.
[1] https://lore.kernel.org/netdev/d912cbd7-193b-4269-9857-525bee8bbb6a@gmail.com/