A race condition was found in the QXL driver in the Linux kernel. The qxl_mode_dumb_create() function dereferences the qobj returned by the qxl_gem_object_create_with_handle(), but the handle is the only one holding a reference to it. This flaw allows an attacker to guess the returned handle value and trigger a use-after-free issue, potentially leading to a denial of service or privilege escalation.
A flaw was found in wildfly-core. A management user could use the resolve-expression in the HAL Interface to read possible sensitive information from the Wildfly system. This issue could allow a malicious user to access the system and obtain possible sensitive information from the system.
An out-of-bounds read vulnerability was found in OpenSC packages within the MyEID driver when handling symmetric key encryption. Exploiting this flaw requires an attacker to have physical access to the computer and a specially crafted USB device or smart card. This flaw allows the attacker to manipulate APDU responses and potentially gain unauthorized access to sensitive data, compromising the system's security.
A flaw was found in OpenSC packages that allow a potential PIN bypass. When a token/card is authenticated by one process, it can perform cryptographic operations in other processes when an empty zero-length pin is passed. This issue poses a security risk, particularly for OS logon/screen unlock and for small, permanently connected tokens to computers. Additionally, the token can internally track login status. This flaw allows an attacker to gain unauthorized access, carry out malicious actions, or compromise the system without the user's awareness.
Several memory vulnerabilities were identified within the OpenSC packages, particularly in the card enrollment process using pkcs15-init when a user or administrator enrolls cards. To take advantage of these flaws, an attacker must have physical access to the computer system and employ a custom-crafted USB device or smart card to manipulate responses to APDUs. This manipulation can potentially allow
compromise key generation, certificate loading, and other card management operations during enrollment.
A flaw was found in KVM. An improper check in svm_set_x2apic_msr_interception() may allow direct access to host x2apic msrs when the guest resets its apic, potentially leading to a denial of service condition.
A vulnerability was found in Samba's "rpcecho" development server, a non-Windows RPC server used to test Samba's DCE/RPC stack elements. This vulnerability stems from an RPC function that can be blocked indefinitely. The issue arises because the "rpcecho" service operates with only one worker in the main RPC task, allowing calls to the "rpcecho" server to be blocked for a specified time, causing service disruptions. This disruption is triggered by a "sleep()" call in the "dcesrv_echo_TestSleep()" function under specific conditions. Authenticated users or attackers can exploit this vulnerability to make calls to the "rpcecho" server, requesting it to block for a specified duration, effectively disrupting most services and leading to a complete denial of service on the AD DC. The DoS affects all other services as "rpcecho" runs in the main RPC task.