In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: Make ICC_*SGI*_EL1 undef in the absence of a vGICv3
On a system with a GICv3, if a guest hasn't been configured with
GICv3 and that the host is not capable of GICv2 emulation,
a write to any of the ICC_*SGI*_EL1 registers is trapped to EL2.
We therefore try to emulate the SGI access, only to hit a NULL
pointer as no private interrupt is allocated (no GIC, remember?).
The obvious fix is to give the guest what it deserves, in the
shape of a UNDEF exception.
In the Linux kernel, the following vulnerability has been resolved:
selinux,smack: don't bypass permissions check in inode_setsecctx hook
Marek Gresko reports that the root user on an NFS client is able to
change the security labels on files on an NFS filesystem that is
exported with root squashing enabled.
The end of the kerneldoc comment for __vfs_setxattr_noperm() states:
* This function requires the caller to lock the inode's i_mutex before it
* is executed. It also assumes that the caller will make the appropriate
* permission checks.
nfsd_setattr() does do permissions checking via fh_verify() and
nfsd_permission(), but those don't do all the same permissions checks
that are done by security_inode_setxattr() and its related LSM hooks do.
Since nfsd_setattr() is the only consumer of security_inode_setsecctx(),
simplest solution appears to be to replace the call to
__vfs_setxattr_noperm() with a call to __vfs_setxattr_locked(). This
fixes the above issue and has the added benefit of causing nfsd to
recall conflicting delegations on a file when a client tries to change
its security label.
In the Linux kernel, the following vulnerability has been resolved:
usb: dwc3: st: fix probed platform device ref count on probe error path
The probe function never performs any paltform device allocation, thus
error path "undo_platform_dev_alloc" is entirely bogus. It drops the
reference count from the platform device being probed. If error path is
triggered, this will lead to unbalanced device reference counts and
premature release of device resources, thus possible use-after-free when
releasing remaining devm-managed resources.
In the Linux kernel, the following vulnerability has been resolved:
usb: dwc3: core: Prevent USB core invalid event buffer address access
This commit addresses an issue where the USB core could access an
invalid event buffer address during runtime suspend, potentially causing
SMMU faults and other memory issues in Exynos platforms. The problem
arises from the following sequence.
1. In dwc3_gadget_suspend, there is a chance of a timeout when
moving the USB core to the halt state after clearing the
run/stop bit by software.
2. In dwc3_core_exit, the event buffer is cleared regardless of
the USB core's status, which may lead to an SMMU faults and
other memory issues. if the USB core tries to access the event
buffer address.
To prevent this hardware quirk on Exynos platforms, this commit ensures
that the event buffer address is not cleared by software when the USB
core is active during runtime suspend by checking its status before
clearing the buffer address.
In the Linux kernel, the following vulnerability has been resolved:
nfc: pn533: Add poll mod list filling check
In case of im_protocols value is 1 and tm_protocols value is 0 this
combination successfully passes the check
'if (!im_protocols && !tm_protocols)' in the nfc_start_poll().
But then after pn533_poll_create_mod_list() call in pn533_start_poll()
poll mod list will remain empty and dev->poll_mod_count will remain 0
which lead to division by zero.
Normally no im protocol has value 1 in the mask, so this combination is
not expected by driver. But these protocol values actually come from
userspace via Netlink interface (NFC_CMD_START_POLL operation). So a
broken or malicious program may pass a message containing a "bad"
combination of protocol parameter values so that dev->poll_mod_count
is not incremented inside pn533_poll_create_mod_list(), thus leading
to division by zero.
Call trace looks like:
nfc_genl_start_poll()
nfc_start_poll()
->start_poll()
pn533_start_poll()
Add poll mod list filling check.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
In the Linux kernel, the following vulnerability has been resolved:
ethtool: check device is present when getting link settings
A sysfs reader can race with a device reset or removal, attempting to
read device state when the device is not actually present. eg:
[exception RIP: qed_get_current_link+17]
#8 [ffffb9e4f2907c48] qede_get_link_ksettings at ffffffffc07a994a [qede]
#9 [ffffb9e4f2907cd8] __rh_call_get_link_ksettings at ffffffff992b01a3
#10 [ffffb9e4f2907d38] __ethtool_get_link_ksettings at ffffffff992b04e4
#11 [ffffb9e4f2907d90] duplex_show at ffffffff99260300
#12 [ffffb9e4f2907e38] dev_attr_show at ffffffff9905a01c
#13 [ffffb9e4f2907e50] sysfs_kf_seq_show at ffffffff98e0145b
#14 [ffffb9e4f2907e68] seq_read at ffffffff98d902e3
#15 [ffffb9e4f2907ec8] vfs_read at ffffffff98d657d1
#16 [ffffb9e4f2907f00] ksys_read at ffffffff98d65c3f
#17 [ffffb9e4f2907f38] do_syscall_64 at ffffffff98a052fb
crash> struct net_device.state ffff9a9d21336000
state = 5,
state 5 is __LINK_STATE_START (0b1) and __LINK_STATE_NOCARRIER (0b100).
The device is not present, note lack of __LINK_STATE_PRESENT (0b10).
This is the same sort of panic as observed in commit 4224cfd7fb65
("net-sysfs: add check for netdevice being present to speed_show").
There are many other callers of __ethtool_get_link_ksettings() which
don't have a device presence check.
Move this check into ethtool to protect all callers.
In the Linux kernel, the following vulnerability has been resolved:
pktgen: use cpus_read_lock() in pg_net_init()
I have seen the WARN_ON(smp_processor_id() != cpu) firing
in pktgen_thread_worker() during tests.
We must use cpus_read_lock()/cpus_read_unlock()
around the for_each_online_cpu(cpu) loop.
While we are at it use WARN_ON_ONCE() to avoid a possible syslog flood.
In the Linux kernel, the following vulnerability has been resolved:
scsi: aacraid: Fix double-free on probe failure
aac_probe_one() calls hardware-specific init functions through the
aac_driver_ident::init pointer, all of which eventually call down to
aac_init_adapter().
If aac_init_adapter() fails after allocating memory for aac_dev::queues,
it frees the memory but does not clear that member.
After the hardware-specific init function returns an error,
aac_probe_one() goes down an error path that frees the memory pointed to
by aac_dev::queues, resulting.in a double-free.
In the Linux kernel, the following vulnerability has been resolved:
memcg_write_event_control(): fix a user-triggerable oops
we are *not* guaranteed that anything past the terminating NUL
is mapped (let alone initialized with anything sane).
In the Linux kernel, the following vulnerability has been resolved:
fix bitmap corruption on close_range() with CLOSE_RANGE_UNSHARE
copy_fd_bitmaps(new, old, count) is expected to copy the first
count/BITS_PER_LONG bits from old->full_fds_bits[] and fill
the rest with zeroes. What it does is copying enough words
(BITS_TO_LONGS(count/BITS_PER_LONG)), then memsets the rest.
That works fine, *if* all bits past the cutoff point are
clear. Otherwise we are risking garbage from the last word
we'd copied.
For most of the callers that is true - expand_fdtable() has
count equal to old->max_fds, so there's no open descriptors
past count, let alone fully occupied words in ->open_fds[],
which is what bits in ->full_fds_bits[] correspond to.
The other caller (dup_fd()) passes sane_fdtable_size(old_fdt, max_fds),
which is the smallest multiple of BITS_PER_LONG that covers all
opened descriptors below max_fds. In the common case (copying on
fork()) max_fds is ~0U, so all opened descriptors will be below
it and we are fine, by the same reasons why the call in expand_fdtable()
is safe.
Unfortunately, there is a case where max_fds is less than that
and where we might, indeed, end up with junk in ->full_fds_bits[] -
close_range(from, to, CLOSE_RANGE_UNSHARE) with
* descriptor table being currently shared
* 'to' being above the current capacity of descriptor table
* 'from' being just under some chunk of opened descriptors.
In that case we end up with observably wrong behaviour - e.g. spawn
a child with CLONE_FILES, get all descriptors in range 0..127 open,
then close_range(64, ~0U, CLOSE_RANGE_UNSHARE) and watch dup(0) ending
up with descriptor #128, despite #64 being observably not open.
The minimally invasive fix would be to deal with that in dup_fd().
If this proves to add measurable overhead, we can go that way, but
let's try to fix copy_fd_bitmaps() first.
* new helper: bitmap_copy_and_expand(to, from, bits_to_copy, size).
* make copy_fd_bitmaps() take the bitmap size in words, rather than
bits; it's 'count' argument is always a multiple of BITS_PER_LONG,
so we are not losing any information, and that way we can use the
same helper for all three bitmaps - compiler will see that count
is a multiple of BITS_PER_LONG for the large ones, so it'll generate
plain memcpy()+memset().
Reproducer added to tools/testing/selftests/core/close_range_test.c