In the Linux kernel, the following vulnerability has been resolved:
x86/xen: don't do PV iret hypercall through hypercall page
Instead of jumping to the Xen hypercall page for doing the iret
hypercall, directly code the required sequence in xen-asm.S.
This is done in preparation of no longer using hypercall page at all,
as it has shown to cause problems with speculation mitigations.
This is part of XSA-466 / CVE-2024-53241.
In the Linux kernel, the following vulnerability has been resolved:
netfilter: ipset: add missing range check in bitmap_ip_uadt
When tb[IPSET_ATTR_IP_TO] is not present but tb[IPSET_ATTR_CIDR] exists,
the values of ip and ip_to are slightly swapped. Therefore, the range check
for ip should be done later, but this part is missing and it seems that the
vulnerability occurs.
So we should add missing range checks and remove unnecessary range checks.
In the Linux kernel, the following vulnerability has been resolved:
initramfs: avoid filename buffer overrun
The initramfs filename field is defined in
Documentation/driver-api/early-userspace/buffer-format.rst as:
37 cpio_file := ALGN(4) + cpio_header + filename + "\0" + ALGN(4) + data
...
55 ============= ================== =========================
56 Field name Field size Meaning
57 ============= ================== =========================
...
70 c_namesize 8 bytes Length of filename, including final \0
When extracting an initramfs cpio archive, the kernel's do_name() path
handler assumes a zero-terminated path at @collected, passing it
directly to filp_open() / init_mkdir() / init_mknod().
If a specially crafted cpio entry carries a non-zero-terminated filename
and is followed by uninitialized memory, then a file may be created with
trailing characters that represent the uninitialized memory. The ability
to create an initramfs entry would imply already having full control of
the system, so the buffer overrun shouldn't be considered a security
vulnerability.
Append the output of the following bash script to an existing initramfs
and observe any created /initramfs_test_fname_overrunAA* path. E.g.
./reproducer.sh | gzip >> /myinitramfs
It's easiest to observe non-zero uninitialized memory when the output is
gzipped, as it'll overflow the heap allocated @out_buf in __gunzip(),
rather than the initrd_start+initrd_size block.
---- reproducer.sh ----
nilchar="A" # change to "\0" to properly zero terminate / pad
magic="070701"
ino=1
mode=$(( 0100777 ))
uid=0
gid=0
nlink=1
mtime=1
filesize=0
devmajor=0
devminor=1
rdevmajor=0
rdevminor=0
csum=0
fname="initramfs_test_fname_overrun"
namelen=$(( ${#fname} + 1 )) # plus one to account for terminator
printf "%s%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%s" \
$magic $ino $mode $uid $gid $nlink $mtime $filesize \
$devmajor $devminor $rdevmajor $rdevminor $namelen $csum $fname
termpadlen=$(( 1 + ((4 - ((110 + $namelen) & 3)) % 4) ))
printf "%.s${nilchar}" $(seq 1 $termpadlen)
---- reproducer.sh ----
Symlink filename fields handled in do_symlink() won't overrun past the
data segment, due to the explicit zero-termination of the symlink
target.
Fix filename buffer overrun by aborting the initramfs FSM if any cpio
entry doesn't carry a zero-terminator at the expected (name_len - 1)
offset.
In the Linux kernel, the following vulnerability has been resolved:
netlink: terminate outstanding dump on socket close
Netlink supports iterative dumping of data. It provides the families
the following ops:
- start - (optional) kicks off the dumping process
- dump - actual dump helper, keeps getting called until it returns 0
- done - (optional) pairs with .start, can be used for cleanup
The whole process is asynchronous and the repeated calls to .dump
don't actually happen in a tight loop, but rather are triggered
in response to recvmsg() on the socket.
This gives the user full control over the dump, but also means that
the user can close the socket without getting to the end of the dump.
To make sure .start is always paired with .done we check if there
is an ongoing dump before freeing the socket, and if so call .done.
The complication is that sockets can get freed from BH and .done
is allowed to sleep. So we use a workqueue to defer the call, when
needed.
Unfortunately this does not work correctly. What we defer is not
the cleanup but rather releasing a reference on the socket.
We have no guarantee that we own the last reference, if someone
else holds the socket they may release it in BH and we're back
to square one.
The whole dance, however, appears to be unnecessary. Only the user
can interact with dumps, so we can clean up when socket is closed.
And close always happens in process context. Some async code may
still access the socket after close, queue notification skbs to it etc.
but no dumps can start, end or otherwise make progress.
Delete the workqueue and flush the dump state directly from the release
handler. Note that further cleanup is possible in -next, for instance
we now always call .done before releasing the main module reference,
so dump doesn't have to take a reference of its own.
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix null-ptr-deref in block_touch_buffer tracepoint
Patch series "nilfs2: fix null-ptr-deref bugs on block tracepoints".
This series fixes null pointer dereference bugs that occur when using
nilfs2 and two block-related tracepoints.
This patch (of 2):
It has been reported that when using "block:block_touch_buffer"
tracepoint, touch_buffer() called from __nilfs_get_folio_block() causes a
NULL pointer dereference, or a general protection fault when KASAN is
enabled.
This happens because since the tracepoint was added in touch_buffer(), it
references the dev_t member bh->b_bdev->bd_dev regardless of whether the
buffer head has a pointer to a block_device structure. In the current
implementation, the block_device structure is set after the function
returns to the caller.
Here, touch_buffer() is used to mark the folio/page that owns the buffer
head as accessed, but the common search helper for folio/page used by the
caller function was optimized to mark the folio/page as accessed when it
was reimplemented a long time ago, eliminating the need to call
touch_buffer() here in the first place.
So this solves the issue by eliminating the touch_buffer() call itself.
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Handle dml allocation failure to avoid crash
[Why]
In the case where a dml allocation fails for any reason, the
current state's dml contexts would no longer be valid. Then
subsequent calls dc_state_copy_internal would shallow copy
invalid memory and if the new state was released, a double
free would occur.
[How]
Reset dml pointers in new_state to NULL and avoid invalid
pointer
(cherry picked from commit bcafdc61529a48f6f06355d78eb41b3aeda5296c)
In the Linux kernel, the following vulnerability has been resolved:
pmdomain: imx93-blk-ctrl: correct remove path
The check condition should be 'i < bc->onecell_data.num_domains', not
'bc->onecell_data.num_domains' which will make the look never finish
and cause kernel panic.
Also disable runtime to address
"imx93-blk-ctrl 4ac10000.system-controller: Unbalanced pm_runtime_enable!"
In the Linux kernel, the following vulnerability has been resolved:
KVM: VMX: Bury Intel PT virtualization (guest/host mode) behind CONFIG_BROKEN
Hide KVM's pt_mode module param behind CONFIG_BROKEN, i.e. disable support
for virtualizing Intel PT via guest/host mode unless BROKEN=y. There are
myriad bugs in the implementation, some of which are fatal to the guest,
and others which put the stability and health of the host at risk.
For guest fatalities, the most glaring issue is that KVM fails to ensure
tracing is disabled, and *stays* disabled prior to VM-Enter, which is
necessary as hardware disallows loading (the guest's) RTIT_CTL if tracing
is enabled (enforced via a VMX consistency check). Per the SDM:
If the logical processor is operating with Intel PT enabled (if
IA32_RTIT_CTL.TraceEn = 1) at the time of VM entry, the "load
IA32_RTIT_CTL" VM-entry control must be 0.
On the host side, KVM doesn't validate the guest CPUID configuration
provided by userspace, and even worse, uses the guest configuration to
decide what MSRs to save/load at VM-Enter and VM-Exit. E.g. configuring
guest CPUID to enumerate more address ranges than are supported in hardware
will result in KVM trying to passthrough, save, and load non-existent MSRs,
which generates a variety of WARNs, ToPA ERRORs in the host, a potential
deadlock, etc.
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: kTLS, Fix incorrect page refcounting
The kTLS tx handling code is using a mix of get_page() and
page_ref_inc() APIs to increment the page reference. But on the release
path (mlx5e_ktls_tx_handle_resync_dump_comp()), only put_page() is used.
This is an issue when using pages from large folios: the get_page()
references are stored on the folio page while the page_ref_inc()
references are stored directly in the given page. On release the folio
page will be dereferenced too many times.
This was found while doing kTLS testing with sendfile() + ZC when the
served file was read from NFS on a kernel with NFS large folios support
(commit 49b29a573da8 ("nfs: add support for large folios")).