In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Fix possible memory leak in lpfc_rcv_padisc()
The call to lpfc_sli4_resume_rpi() in lpfc_rcv_padisc() may return an
unsuccessful status. In such cases, the elsiocb is not issued, the
completion is not called, and thus the elsiocb resource is leaked.
Check return value after calling lpfc_sli4_resume_rpi() and conditionally
release the elsiocb resource.
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btintel: Fix null ptr deref in btintel_read_version
If hci_cmd_sync_complete() is triggered and skb is NULL, then
hdev->req_skb is NULL, which will cause this issue.
In the Linux kernel, the following vulnerability has been resolved:
btrfs: send: handle path ref underflow in header iterate_inode_ref()
Change BUG_ON to proper error handling if building the path buffer
fails. The pointers are not printed so we don't accidentally leak kernel
addresses.
In the Linux kernel, the following vulnerability has been resolved:
btrfs: handle chunk tree lookup error in btrfs_relocate_sys_chunks()
The unhandled case in btrfs_relocate_sys_chunks() loop is a corruption,
as it could be caused only by two impossible conditions:
- at first the search key is set up to look for a chunk tree item, with
offset -1, this is an inexact search and the key->offset will contain
the correct offset upon a successful search, a valid chunk tree item
cannot have an offset -1
- after first successful search, the found_key corresponds to a chunk
item, the offset is decremented by 1 before the next loop, it's
impossible to find a chunk item there due to alignment and size
constraints
In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: check A-MSDU format more carefully
If it looks like there's another subframe in the A-MSDU
but the header isn't fully there, we can end up reading
data out of bounds, only to discard later. Make this a
bit more careful and check if the subframe header can
even be present.
In the Linux kernel, the following vulnerability has been resolved:
dma-direct: Leak pages on dma_set_decrypted() failure
On TDX it is possible for the untrusted host to cause
set_memory_encrypted() or set_memory_decrypted() to fail such that an
error is returned and the resulting memory is shared. Callers need to
take care to handle these errors to avoid returning decrypted (shared)
memory to the page allocator, which could lead to functional or security
issues.
DMA could free decrypted/shared pages if dma_set_decrypted() fails. This
should be a rare case. Just leak the pages in this case instead of
freeing them.
In the Linux kernel, the following vulnerability has been resolved:
pstore/zone: Add a null pointer check to the psz_kmsg_read
kasprintf() returns a pointer to dynamically allocated memory
which can be NULL upon failure. Ensure the allocation was successful
by checking the pointer validity.
In the Linux kernel, the following vulnerability has been resolved:
pmdomain: ti: Add a null pointer check to the omap_prm_domain_init
devm_kasprintf() returns a pointer to dynamically allocated memory
which can be NULL upon failure. Ensure the allocation was successful
by checking the pointer validity.