Vulnerabilities
Vulnerable Software
Linux:  >> Linux Kernel  >> 3.0.71  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: SUNRPC: Fix loop termination condition in gss_free_in_token_pages() The in_token->pages[] array is not NULL terminated. This results in the following KASAN splat: KASAN: maybe wild-memory-access in range [0x04a2013400000008-0x04a201340000000f]
CVSS Score
5.5
EPSS Score
0.0
Published
2024-06-21
In the Linux kernel, the following vulnerability has been resolved: serial: max3100: Update uart_driver_registered on driver removal The removal of the last MAX3100 device triggers the removal of the driver. However, code doesn't update the respective global variable and after insmod — rmmod — insmod cycle the kernel oopses: max3100 spi-PRP0001:01: max3100_probe: adding port 0 BUG: kernel NULL pointer dereference, address: 0000000000000408 ... RIP: 0010:serial_core_register_port+0xa0/0x840 ... max3100_probe+0x1b6/0x280 [max3100] spi_probe+0x8d/0xb0 Update the actual state so next time UART driver will be registered again. Hugo also noticed, that the error path in the probe also affected by having the variable set, and not cleared. Instead of clearing it move the assignment after the successfull uart_register_driver() call.
CVSS Score
5.5
EPSS Score
0.0
Published
2024-06-21
In the Linux kernel, the following vulnerability has been resolved: serial: max3100: Lock port->lock when calling uart_handle_cts_change() uart_handle_cts_change() has to be called with port lock taken, Since we run it in a separate work, the lock may not be taken at the time of running. Make sure that it's taken by explicitly doing that. Without it we got a splat: WARNING: CPU: 0 PID: 10 at drivers/tty/serial/serial_core.c:3491 uart_handle_cts_change+0xa6/0xb0 ... Workqueue: max3100-0 max3100_work [max3100] RIP: 0010:uart_handle_cts_change+0xa6/0xb0 ... max3100_handlerx+0xc5/0x110 [max3100] max3100_work+0x12a/0x340 [max3100]
CVSS Score
5.5
EPSS Score
0.0
Published
2024-06-21
In the Linux kernel, the following vulnerability has been resolved: soundwire: cadence: fix invalid PDI offset For some reason, we add an offset to the PDI, presumably to skip the PDI0 and PDI1 which are reserved for BPT. This code is however completely wrong and leads to an out-of-bounds access. We were just lucky so far since we used only a couple of PDIs and remained within the PDI array bounds. A Fixes: tag is not provided since there are no known platforms where the out-of-bounds would be accessed, and the initial code had problems as well. A follow-up patch completely removes this useless offset.
CVSS Score
7.1
EPSS Score
0.0
Published
2024-06-21
In the Linux kernel, the following vulnerability has been resolved: enic: Validate length of nl attributes in enic_set_vf_port enic_set_vf_port assumes that the nl attribute IFLA_PORT_PROFILE is of length PORT_PROFILE_MAX and that the nl attributes IFLA_PORT_INSTANCE_UUID, IFLA_PORT_HOST_UUID are of length PORT_UUID_MAX. These attributes are validated (in the function do_setlink in rtnetlink.c) using the nla_policy ifla_port_policy. The policy defines IFLA_PORT_PROFILE as NLA_STRING, IFLA_PORT_INSTANCE_UUID as NLA_BINARY and IFLA_PORT_HOST_UUID as NLA_STRING. That means that the length validation using the policy is for the max size of the attributes and not on exact size so the length of these attributes might be less than the sizes that enic_set_vf_port expects. This might cause an out of bands read access in the memcpys of the data of these attributes in enic_set_vf_port.
CVSS Score
7.1
EPSS Score
0.0
Published
2024-06-21
In the Linux kernel, the following vulnerability has been resolved: netfilter: tproxy: bail out if IP has been disabled on the device syzbot reports: general protection fault, probably for non-canonical address 0xdffffc0000000003: 0000 [#1] PREEMPT SMP KASAN PTI KASAN: null-ptr-deref in range [0x0000000000000018-0x000000000000001f] [..] RIP: 0010:nf_tproxy_laddr4+0xb7/0x340 net/ipv4/netfilter/nf_tproxy_ipv4.c:62 Call Trace: nft_tproxy_eval_v4 net/netfilter/nft_tproxy.c:56 [inline] nft_tproxy_eval+0xa9a/0x1a00 net/netfilter/nft_tproxy.c:168 __in_dev_get_rcu() can return NULL, so check for this.
CVSS Score
5.5
EPSS Score
0.0
Published
2024-06-21
In the Linux kernel, the following vulnerability has been resolved: netfilter: nfnetlink_queue: acquire rcu_read_lock() in instance_destroy_rcu() syzbot reported that nf_reinject() could be called without rcu_read_lock() : WARNING: suspicious RCU usage 6.9.0-rc7-syzkaller-02060-g5c1672705a1a #0 Not tainted net/netfilter/nfnetlink_queue.c:263 suspicious rcu_dereference_check() usage! other info that might help us debug this: rcu_scheduler_active = 2, debug_locks = 1 2 locks held by syz-executor.4/13427: #0: ffffffff8e334f60 (rcu_callback){....}-{0:0}, at: rcu_lock_acquire include/linux/rcupdate.h:329 [inline] #0: ffffffff8e334f60 (rcu_callback){....}-{0:0}, at: rcu_do_batch kernel/rcu/tree.c:2190 [inline] #0: ffffffff8e334f60 (rcu_callback){....}-{0:0}, at: rcu_core+0xa86/0x1830 kernel/rcu/tree.c:2471 #1: ffff88801ca92958 (&inst->lock){+.-.}-{2:2}, at: spin_lock_bh include/linux/spinlock.h:356 [inline] #1: ffff88801ca92958 (&inst->lock){+.-.}-{2:2}, at: nfqnl_flush net/netfilter/nfnetlink_queue.c:405 [inline] #1: ffff88801ca92958 (&inst->lock){+.-.}-{2:2}, at: instance_destroy_rcu+0x30/0x220 net/netfilter/nfnetlink_queue.c:172 stack backtrace: CPU: 0 PID: 13427 Comm: syz-executor.4 Not tainted 6.9.0-rc7-syzkaller-02060-g5c1672705a1a #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 04/02/2024 Call Trace: <IRQ> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114 lockdep_rcu_suspicious+0x221/0x340 kernel/locking/lockdep.c:6712 nf_reinject net/netfilter/nfnetlink_queue.c:323 [inline] nfqnl_reinject+0x6ec/0x1120 net/netfilter/nfnetlink_queue.c:397 nfqnl_flush net/netfilter/nfnetlink_queue.c:410 [inline] instance_destroy_rcu+0x1ae/0x220 net/netfilter/nfnetlink_queue.c:172 rcu_do_batch kernel/rcu/tree.c:2196 [inline] rcu_core+0xafd/0x1830 kernel/rcu/tree.c:2471 handle_softirqs+0x2d6/0x990 kernel/softirq.c:554 __do_softirq kernel/softirq.c:588 [inline] invoke_softirq kernel/softirq.c:428 [inline] __irq_exit_rcu+0xf4/0x1c0 kernel/softirq.c:637 irq_exit_rcu+0x9/0x30 kernel/softirq.c:649 instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1043 [inline] sysvec_apic_timer_interrupt+0xa6/0xc0 arch/x86/kernel/apic/apic.c:1043 </IRQ> <TASK>
CVSS Score
5.5
EPSS Score
0.0
Published
2024-06-21
In the Linux kernel, the following vulnerability has been resolved: USB: core: Fix hang in usb_kill_urb by adding memory barriers The syzbot fuzzer has identified a bug in which processes hang waiting for usb_kill_urb() to return. It turns out the issue is not unlinking the URB; that works just fine. Rather, the problem arises when the wakeup notification that the URB has completed is not received. The reason is memory-access ordering on SMP systems. In outline form, usb_kill_urb() and __usb_hcd_giveback_urb() operating concurrently on different CPUs perform the following actions: CPU 0 CPU 1 ---------------------------- --------------------------------- usb_kill_urb(): __usb_hcd_giveback_urb(): ... ... atomic_inc(&urb->reject); atomic_dec(&urb->use_count); ... ... wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0); if (atomic_read(&urb->reject)) wake_up(&usb_kill_urb_queue); Confining your attention to urb->reject and urb->use_count, you can see that the overall pattern of accesses on CPU 0 is: write urb->reject, then read urb->use_count; whereas the overall pattern of accesses on CPU 1 is: write urb->use_count, then read urb->reject. This pattern is referred to in memory-model circles as SB (for "Store Buffering"), and it is well known that without suitable enforcement of the desired order of accesses -- in the form of memory barriers -- it is entirely possible for one or both CPUs to execute their reads ahead of their writes. The end result will be that sometimes CPU 0 sees the old un-decremented value of urb->use_count while CPU 1 sees the old un-incremented value of urb->reject. Consequently CPU 0 ends up on the wait queue and never gets woken up, leading to the observed hang in usb_kill_urb(). The same pattern of accesses occurs in usb_poison_urb() and the failure pathway of usb_hcd_submit_urb(). The problem is fixed by adding suitable memory barriers. To provide proper memory-access ordering in the SB pattern, a full barrier is required on both CPUs. The atomic_inc() and atomic_dec() accesses themselves don't provide any memory ordering, but since they are present, we can use the optimized smp_mb__after_atomic() memory barrier in the various routines to obtain the desired effect. This patch adds the necessary memory barriers.
CVSS Score
7.1
EPSS Score
0.0
Published
2024-06-20
In the Linux kernel, the following vulnerability has been resolved: usb: xhci-plat: fix crash when suspend if remote wake enable Crashed at i.mx8qm platform when suspend if enable remote wakeup Internal error: synchronous external abort: 96000210 [#1] PREEMPT SMP Modules linked in: CPU: 2 PID: 244 Comm: kworker/u12:6 Not tainted 5.15.5-dirty #12 Hardware name: Freescale i.MX8QM MEK (DT) Workqueue: events_unbound async_run_entry_fn pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : xhci_disable_hub_port_wake.isra.62+0x60/0xf8 lr : xhci_disable_hub_port_wake.isra.62+0x34/0xf8 sp : ffff80001394bbf0 x29: ffff80001394bbf0 x28: 0000000000000000 x27: ffff00081193b578 x26: ffff00081193b570 x25: 0000000000000000 x24: 0000000000000000 x23: ffff00081193a29c x22: 0000000000020001 x21: 0000000000000001 x20: 0000000000000000 x19: ffff800014e90490 x18: 0000000000000000 x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000 x14: 0000000000000000 x13: 0000000000000002 x12: 0000000000000000 x11: 0000000000000000 x10: 0000000000000960 x9 : ffff80001394baa0 x8 : ffff0008145d1780 x7 : ffff0008f95b8e80 x6 : 000000001853b453 x5 : 0000000000000496 x4 : 0000000000000000 x3 : ffff00081193a29c x2 : 0000000000000001 x1 : 0000000000000000 x0 : ffff000814591620 Call trace: xhci_disable_hub_port_wake.isra.62+0x60/0xf8 xhci_suspend+0x58/0x510 xhci_plat_suspend+0x50/0x78 platform_pm_suspend+0x2c/0x78 dpm_run_callback.isra.25+0x50/0xe8 __device_suspend+0x108/0x3c0 The basic flow: 1. run time suspend call xhci_suspend, xhci parent devices gate the clock. 2. echo mem >/sys/power/state, system _device_suspend call xhci_suspend 3. xhci_suspend call xhci_disable_hub_port_wake, which access register, but clock already gated by run time suspend. This problem was hidden by power domain driver, which call run time resume before it. But the below commit remove it and make this issue happen. commit c1df456d0f06e ("PM: domains: Don't runtime resume devices at genpd_prepare()") This patch call run time resume before suspend to make sure clock is on before access register. Testeb-by: Abel Vesa <abel.vesa@nxp.com>
CVSS Score
5.3
EPSS Score
0.0
Published
2024-06-20
In the Linux kernel, the following vulnerability has been resolved: KVM: x86: Forcibly leave nested virt when SMM state is toggled Forcibly leave nested virtualization operation if userspace toggles SMM state via KVM_SET_VCPU_EVENTS or KVM_SYNC_X86_EVENTS. If userspace forces the vCPU out of SMM while it's post-VMXON and then injects an SMI, vmx_enter_smm() will overwrite vmx->nested.smm.vmxon and end up with both vmxon=false and smm.vmxon=false, but all other nVMX state allocated. Don't attempt to gracefully handle the transition as (a) most transitions are nonsencial, e.g. forcing SMM while L2 is running, (b) there isn't sufficient information to handle all transitions, e.g. SVM wants access to the SMRAM save state, and (c) KVM_SET_VCPU_EVENTS must precede KVM_SET_NESTED_STATE during state restore as the latter disallows putting the vCPU into L2 if SMM is active, and disallows tagging the vCPU as being post-VMXON in SMM if SMM is not active. Abuse of KVM_SET_VCPU_EVENTS manifests as a WARN and memory leak in nVMX due to failure to free vmcs01's shadow VMCS, but the bug goes far beyond just a memory leak, e.g. toggling SMM on while L2 is active puts the vCPU in an architecturally impossible state. WARNING: CPU: 0 PID: 3606 at free_loaded_vmcs arch/x86/kvm/vmx/vmx.c:2665 [inline] WARNING: CPU: 0 PID: 3606 at free_loaded_vmcs+0x158/0x1a0 arch/x86/kvm/vmx/vmx.c:2656 Modules linked in: CPU: 1 PID: 3606 Comm: syz-executor725 Not tainted 5.17.0-rc1-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:free_loaded_vmcs arch/x86/kvm/vmx/vmx.c:2665 [inline] RIP: 0010:free_loaded_vmcs+0x158/0x1a0 arch/x86/kvm/vmx/vmx.c:2656 Code: <0f> 0b eb b3 e8 8f 4d 9f 00 e9 f7 fe ff ff 48 89 df e8 92 4d 9f 00 Call Trace: <TASK> kvm_arch_vcpu_destroy+0x72/0x2f0 arch/x86/kvm/x86.c:11123 kvm_vcpu_destroy arch/x86/kvm/../../../virt/kvm/kvm_main.c:441 [inline] kvm_destroy_vcpus+0x11f/0x290 arch/x86/kvm/../../../virt/kvm/kvm_main.c:460 kvm_free_vcpus arch/x86/kvm/x86.c:11564 [inline] kvm_arch_destroy_vm+0x2e8/0x470 arch/x86/kvm/x86.c:11676 kvm_destroy_vm arch/x86/kvm/../../../virt/kvm/kvm_main.c:1217 [inline] kvm_put_kvm+0x4fa/0xb00 arch/x86/kvm/../../../virt/kvm/kvm_main.c:1250 kvm_vm_release+0x3f/0x50 arch/x86/kvm/../../../virt/kvm/kvm_main.c:1273 __fput+0x286/0x9f0 fs/file_table.c:311 task_work_run+0xdd/0x1a0 kernel/task_work.c:164 exit_task_work include/linux/task_work.h:32 [inline] do_exit+0xb29/0x2a30 kernel/exit.c:806 do_group_exit+0xd2/0x2f0 kernel/exit.c:935 get_signal+0x4b0/0x28c0 kernel/signal.c:2862 arch_do_signal_or_restart+0x2a9/0x1c40 arch/x86/kernel/signal.c:868 handle_signal_work kernel/entry/common.c:148 [inline] exit_to_user_mode_loop kernel/entry/common.c:172 [inline] exit_to_user_mode_prepare+0x17d/0x290 kernel/entry/common.c:207 __syscall_exit_to_user_mode_work kernel/entry/common.c:289 [inline] syscall_exit_to_user_mode+0x19/0x60 kernel/entry/common.c:300 do_syscall_64+0x42/0xb0 arch/x86/entry/common.c:86 entry_SYSCALL_64_after_hwframe+0x44/0xae </TASK>
CVSS Score
5.5
EPSS Score
0.0
Published
2024-06-20


Contact Us

Shodan ® - All rights reserved