In the Linux kernel, the following vulnerability has been resolved:
iio: adc: ad7923: Fix buffer overflow for tx_buf and ring_xfer
The AD7923 was updated to support devices with 8 channels, but the size
of tx_buf and ring_xfer was not increased accordingly, leading to a
potential buffer overflow in ad7923_update_scan_mode().
In the Linux kernel, the following vulnerability has been resolved:
nfsd: make sure exp active before svc_export_show
The function `e_show` was called with protection from RCU. This only
ensures that `exp` will not be freed. Therefore, the reference count for
`exp` can drop to zero, which will trigger a refcount use-after-free
warning when `exp_get` is called. To resolve this issue, use
`cache_get_rcu` to ensure that `exp` remains active.
------------[ cut here ]------------
refcount_t: addition on 0; use-after-free.
WARNING: CPU: 3 PID: 819 at lib/refcount.c:25
refcount_warn_saturate+0xb1/0x120
CPU: 3 UID: 0 PID: 819 Comm: cat Not tainted 6.12.0-rc3+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.16.1-2.fc37 04/01/2014
RIP: 0010:refcount_warn_saturate+0xb1/0x120
...
Call Trace:
<TASK>
e_show+0x20b/0x230 [nfsd]
seq_read_iter+0x589/0x770
seq_read+0x1e5/0x270
vfs_read+0x125/0x530
ksys_read+0xc1/0x160
do_syscall_64+0x5f/0x170
entry_SYSCALL_64_after_hwframe+0x76/0x7e
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: Skip Rx TID cleanup for self peer
During peer create, dp setup for the peer is done where Rx TID is
updated for all the TIDs. Peer object for self peer will not go through
dp setup.
When core halts, dp cleanup is done for all the peers. While cleanup,
rx_tid::ab is accessed which causes below stack trace for self peer.
WARNING: CPU: 6 PID: 12297 at drivers/net/wireless/ath/ath12k/dp_rx.c:851
Call Trace:
__warn+0x7b/0x1a0
ath12k_dp_rx_frags_cleanup+0xd2/0xe0 [ath12k]
report_bug+0x10b/0x200
handle_bug+0x3f/0x70
exc_invalid_op+0x13/0x60
asm_exc_invalid_op+0x16/0x20
ath12k_dp_rx_frags_cleanup+0xd2/0xe0 [ath12k]
ath12k_dp_rx_frags_cleanup+0xca/0xe0 [ath12k]
ath12k_dp_rx_peer_tid_cleanup+0x39/0xa0 [ath12k]
ath12k_mac_peer_cleanup_all+0x61/0x100 [ath12k]
ath12k_core_halt+0x3b/0x100 [ath12k]
ath12k_core_reset+0x494/0x4c0 [ath12k]
sta object in peer will be updated when remote peer is created. Hence
use peer::sta to detect the self peer and skip the cleanup.
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.0.1-00029-QCAHKSWPL_SILICONZ-1
Tested-on: WCN7850 hw2.0 PCI WLAN.HMT.1.0.c5-00481-QCAHMTSWPL_V1.0_V2.0_SILICONZ-3
In the Linux kernel, the following vulnerability has been resolved:
udmabuf: change folios array from kmalloc to kvmalloc
When PAGE_SIZE 4096, MAX_PAGE_ORDER 10, 64bit machine,
page_alloc only support 4MB.
If above this, trigger this warn and return NULL.
udmabuf can change size limit, if change it to 3072(3GB), and then alloc
3GB udmabuf, will fail create.
[ 4080.876581] ------------[ cut here ]------------
[ 4080.876843] WARNING: CPU: 3 PID: 2015 at mm/page_alloc.c:4556 __alloc_pages+0x2c8/0x350
[ 4080.878839] RIP: 0010:__alloc_pages+0x2c8/0x350
[ 4080.879470] Call Trace:
[ 4080.879473] <TASK>
[ 4080.879473] ? __alloc_pages+0x2c8/0x350
[ 4080.879475] ? __warn.cold+0x8e/0xe8
[ 4080.880647] ? __alloc_pages+0x2c8/0x350
[ 4080.880909] ? report_bug+0xff/0x140
[ 4080.881175] ? handle_bug+0x3c/0x80
[ 4080.881556] ? exc_invalid_op+0x17/0x70
[ 4080.881559] ? asm_exc_invalid_op+0x1a/0x20
[ 4080.882077] ? udmabuf_create+0x131/0x400
Because MAX_PAGE_ORDER, kmalloc can max alloc 4096 * (1 << 10), 4MB
memory, each array entry is pointer(8byte), so can save 524288 pages(2GB).
Further more, costly order(order 3) may not be guaranteed that it can be
applied for, due to fragmentation.
This patch change udmabuf array use kvmalloc_array, this can fallback
alloc into vmalloc, which can guarantee allocation for any size and does
not affect the performance of kmalloc allocations.
In the Linux kernel, the following vulnerability has been resolved:
HID: hyperv: streamline driver probe to avoid devres issues
It was found that unloading 'hid_hyperv' module results in a devres
complaint:
...
hv_vmbus: unregistering driver hid_hyperv
------------[ cut here ]------------
WARNING: CPU: 2 PID: 3983 at drivers/base/devres.c:691 devres_release_group+0x1f2/0x2c0
...
Call Trace:
<TASK>
? devres_release_group+0x1f2/0x2c0
? __warn+0xd1/0x1c0
? devres_release_group+0x1f2/0x2c0
? report_bug+0x32a/0x3c0
? handle_bug+0x53/0xa0
? exc_invalid_op+0x18/0x50
? asm_exc_invalid_op+0x1a/0x20
? devres_release_group+0x1f2/0x2c0
? devres_release_group+0x90/0x2c0
? rcu_is_watching+0x15/0xb0
? __pfx_devres_release_group+0x10/0x10
hid_device_remove+0xf5/0x220
device_release_driver_internal+0x371/0x540
? klist_put+0xf3/0x170
bus_remove_device+0x1f1/0x3f0
device_del+0x33f/0x8c0
? __pfx_device_del+0x10/0x10
? cleanup_srcu_struct+0x337/0x500
hid_destroy_device+0xc8/0x130
mousevsc_remove+0xd2/0x1d0 [hid_hyperv]
device_release_driver_internal+0x371/0x540
driver_detach+0xc5/0x180
bus_remove_driver+0x11e/0x2a0
? __mutex_unlock_slowpath+0x160/0x5e0
vmbus_driver_unregister+0x62/0x2b0 [hv_vmbus]
...
And the issue seems to be that the corresponding devres group is not
allocated. Normally, devres_open_group() is called from
__hid_device_probe() but Hyper-V HID driver overrides 'hid_dev->driver'
with 'mousevsc_hid_driver' stub and basically re-implements
__hid_device_probe() by calling hid_parse() and hid_hw_start() but not
devres_open_group(). hid_device_probe() does not call __hid_device_probe()
for it. Later, when the driver is removed, hid_device_remove() calls
devres_release_group() as it doesn't check whether hdev->driver was
initially overridden or not.
The issue seems to be related to the commit 62c68e7cee33 ("HID: ensure
timely release of driver-allocated resources") but the commit itself seems
to be correct.
Fix the issue by dropping the 'hid_dev->driver' override and using
hid_register_driver()/hid_unregister_driver() instead. Alternatively, it
would have been possible to rely on the default handling but
HID_CONNECT_DEFAULT implies HID_CONNECT_HIDRAW and it doesn't seem to work
for mousevsc as-is.
In the Linux kernel, the following vulnerability has been resolved:
drivers: soc: xilinx: add the missing kfree in xlnx_add_cb_for_suspend()
If we fail to allocate memory for cb_data by kmalloc, the memory
allocation for eve_data is never freed, add the missing kfree()
in the error handling path.
In the Linux kernel, the following vulnerability has been resolved:
hfsplus: don't query the device logical block size multiple times
Devices block sizes may change. One of these cases is a loop device by
using ioctl LOOP_SET_BLOCK_SIZE.
While this may cause other issues like IO being rejected, in the case of
hfsplus, it will allocate a block by using that size and potentially write
out-of-bounds when hfsplus_read_wrapper calls hfsplus_submit_bio and the
latter function reads a different io_size.
Using a new min_io_size initally set to sb_min_blocksize works for the
purposes of the original fix, since it will be set to the max between
HFSPLUS_SECTOR_SIZE and the first seen logical block size. We still use the
max between HFSPLUS_SECTOR_SIZE and min_io_size in case the latter is not
initialized.
Tested by mounting an hfsplus filesystem with loop block sizes 512, 1024
and 4096.
The produced KASAN report before the fix looks like this:
[ 419.944641] ==================================================================
[ 419.945655] BUG: KASAN: slab-use-after-free in hfsplus_read_wrapper+0x659/0xa0a
[ 419.946703] Read of size 2 at addr ffff88800721fc00 by task repro/10678
[ 419.947612]
[ 419.947846] CPU: 0 UID: 0 PID: 10678 Comm: repro Not tainted 6.12.0-rc5-00008-gdf56e0f2f3ca #84
[ 419.949007] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014
[ 419.950035] Call Trace:
[ 419.950384] <TASK>
[ 419.950676] dump_stack_lvl+0x57/0x78
[ 419.951212] ? hfsplus_read_wrapper+0x659/0xa0a
[ 419.951830] print_report+0x14c/0x49e
[ 419.952361] ? __virt_addr_valid+0x267/0x278
[ 419.952979] ? kmem_cache_debug_flags+0xc/0x1d
[ 419.953561] ? hfsplus_read_wrapper+0x659/0xa0a
[ 419.954231] kasan_report+0x89/0xb0
[ 419.954748] ? hfsplus_read_wrapper+0x659/0xa0a
[ 419.955367] hfsplus_read_wrapper+0x659/0xa0a
[ 419.955948] ? __pfx_hfsplus_read_wrapper+0x10/0x10
[ 419.956618] ? do_raw_spin_unlock+0x59/0x1a9
[ 419.957214] ? _raw_spin_unlock+0x1a/0x2e
[ 419.957772] hfsplus_fill_super+0x348/0x1590
[ 419.958355] ? hlock_class+0x4c/0x109
[ 419.958867] ? __pfx_hfsplus_fill_super+0x10/0x10
[ 419.959499] ? __pfx_string+0x10/0x10
[ 419.960006] ? lock_acquire+0x3e2/0x454
[ 419.960532] ? bdev_name.constprop.0+0xce/0x243
[ 419.961129] ? __pfx_bdev_name.constprop.0+0x10/0x10
[ 419.961799] ? pointer+0x3f0/0x62f
[ 419.962277] ? __pfx_pointer+0x10/0x10
[ 419.962761] ? vsnprintf+0x6c4/0xfba
[ 419.963178] ? __pfx_vsnprintf+0x10/0x10
[ 419.963621] ? setup_bdev_super+0x376/0x3b3
[ 419.964029] ? snprintf+0x9d/0xd2
[ 419.964344] ? __pfx_snprintf+0x10/0x10
[ 419.964675] ? lock_acquired+0x45c/0x5e9
[ 419.965016] ? set_blocksize+0x139/0x1c1
[ 419.965381] ? sb_set_blocksize+0x6d/0xae
[ 419.965742] ? __pfx_hfsplus_fill_super+0x10/0x10
[ 419.966179] mount_bdev+0x12f/0x1bf
[ 419.966512] ? __pfx_mount_bdev+0x10/0x10
[ 419.966886] ? vfs_parse_fs_string+0xce/0x111
[ 419.967293] ? __pfx_vfs_parse_fs_string+0x10/0x10
[ 419.967702] ? __pfx_hfsplus_mount+0x10/0x10
[ 419.968073] legacy_get_tree+0x104/0x178
[ 419.968414] vfs_get_tree+0x86/0x296
[ 419.968751] path_mount+0xba3/0xd0b
[ 419.969157] ? __pfx_path_mount+0x10/0x10
[ 419.969594] ? kmem_cache_free+0x1e2/0x260
[ 419.970311] do_mount+0x99/0xe0
[ 419.970630] ? __pfx_do_mount+0x10/0x10
[ 419.971008] __do_sys_mount+0x199/0x1c9
[ 419.971397] do_syscall_64+0xd0/0x135
[ 419.971761] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ 419.972233] RIP: 0033:0x7c3cb812972e
[ 419.972564] Code: 48 8b 0d f5 46 0d 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 49 89 ca b8 a5 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d c2 46 0d 00 f7 d8 64 89 01 48
[ 419.974371] RSP: 002b:00007ffe30632548 EFLAGS: 00000286 ORIG_RAX: 00000000000000a5
[ 419.975048] RAX: ffffffffffffffda RBX: 00007ffe306328d8 RCX: 00007c3cb812972e
[ 419.975701] RDX: 0000000020000000 RSI: 0000000020000c80 RDI:
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
cachefiles: Fix NULL pointer dereference in object->file
At present, the object->file has the NULL pointer dereference problem in
ondemand-mode. The root cause is that the allocated fd and object->file
lifetime are inconsistent, and the user-space invocation to anon_fd uses
object->file. Following is the process that triggers the issue:
[write fd] [umount]
cachefiles_ondemand_fd_write_iter
fscache_cookie_state_machine
cachefiles_withdraw_cookie
if (!file) return -ENOBUFS
cachefiles_clean_up_object
cachefiles_unmark_inode_in_use
fput(object->file)
object->file = NULL
// file NULL pointer dereference!
__cachefiles_write(..., file, ...)
Fix this issue by add an additional reference count to the object->file
before write/llseek, and decrement after it finished.
In the Linux kernel, the following vulnerability has been resolved:
drm: zynqmp_kms: Unplug DRM device before removal
Prevent userspace accesses to the DRM device from causing
use-after-frees by unplugging the device before we remove it. This
causes any further userspace accesses to result in an error without
further calls into this driver's internals.