In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_core: Fix not checking skb length on hci_acldata_packet
This fixes not checking if skb really contains an ACL header otherwise
the code may attempt to access some uninitilized/invalid memory past the
valid skb->data.
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_conn: Use disable_delayed_work_sync
This makes use of disable_delayed_work_sync instead
cancel_delayed_work_sync as it not only cancel the ongoing work but also
disables new submit which is disarable since the object holding the work
is about to be freed.
In the Linux kernel, the following vulnerability has been resolved:
bpf: Call free_htab_elem() after htab_unlock_bucket()
For htab of maps, when the map is removed from the htab, it may hold the
last reference of the map. bpf_map_fd_put_ptr() will invoke
bpf_map_free_id() to free the id of the removed map element. However,
bpf_map_fd_put_ptr() is invoked while holding a bucket lock
(raw_spin_lock_t), and bpf_map_free_id() attempts to acquire map_idr_lock
(spinlock_t), triggering the following lockdep warning:
=============================
[ BUG: Invalid wait context ]
6.11.0-rc4+ #49 Not tainted
-----------------------------
test_maps/4881 is trying to lock:
ffffffff84884578 (map_idr_lock){+...}-{3:3}, at: bpf_map_free_id.part.0+0x21/0x70
other info that might help us debug this:
context-{5:5}
2 locks held by test_maps/4881:
#0: ffffffff846caf60 (rcu_read_lock){....}-{1:3}, at: bpf_fd_htab_map_update_elem+0xf9/0x270
#1: ffff888149ced148 (&htab->lockdep_key#2){....}-{2:2}, at: htab_map_update_elem+0x178/0xa80
stack backtrace:
CPU: 0 UID: 0 PID: 4881 Comm: test_maps Not tainted 6.11.0-rc4+ #49
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), ...
Call Trace:
<TASK>
dump_stack_lvl+0x6e/0xb0
dump_stack+0x10/0x20
__lock_acquire+0x73e/0x36c0
lock_acquire+0x182/0x450
_raw_spin_lock_irqsave+0x43/0x70
bpf_map_free_id.part.0+0x21/0x70
bpf_map_put+0xcf/0x110
bpf_map_fd_put_ptr+0x9a/0xb0
free_htab_elem+0x69/0xe0
htab_map_update_elem+0x50f/0xa80
bpf_fd_htab_map_update_elem+0x131/0x270
htab_map_update_elem+0x50f/0xa80
bpf_fd_htab_map_update_elem+0x131/0x270
bpf_map_update_value+0x266/0x380
__sys_bpf+0x21bb/0x36b0
__x64_sys_bpf+0x45/0x60
x64_sys_call+0x1b2a/0x20d0
do_syscall_64+0x5d/0x100
entry_SYSCALL_64_after_hwframe+0x76/0x7e
One way to fix the lockdep warning is using raw_spinlock_t for
map_idr_lock as well. However, bpf_map_alloc_id() invokes
idr_alloc_cyclic() after acquiring map_idr_lock, it will trigger a
similar lockdep warning because the slab's lock (s->cpu_slab->lock) is
still a spinlock.
Instead of changing map_idr_lock's type, fix the issue by invoking
htab_put_fd_value() after htab_unlock_bucket(). However, only deferring
the invocation of htab_put_fd_value() is not enough, because the old map
pointers in htab of maps can not be saved during batched deletion.
Therefore, also defer the invocation of free_htab_elem(), so these
to-be-freed elements could be linked together similar to lru map.
There are four callers for ->map_fd_put_ptr:
(1) alloc_htab_elem() (through htab_put_fd_value())
It invokes ->map_fd_put_ptr() under a raw_spinlock_t. The invocation of
htab_put_fd_value() can not simply move after htab_unlock_bucket(),
because the old element has already been stashed in htab->extra_elems.
It may be reused immediately after htab_unlock_bucket() and the
invocation of htab_put_fd_value() after htab_unlock_bucket() may release
the newly-added element incorrectly. Therefore, saving the map pointer
of the old element for htab of maps before unlocking the bucket and
releasing the map_ptr after unlock. Beside the map pointer in the old
element, should do the same thing for the special fields in the old
element as well.
(2) free_htab_elem() (through htab_put_fd_value())
Its caller includes __htab_map_lookup_and_delete_elem(),
htab_map_delete_elem() and __htab_map_lookup_and_delete_batch().
For htab_map_delete_elem(), simply invoke free_htab_elem() after
htab_unlock_bucket(). For __htab_map_lookup_and_delete_batch(), just
like lru map, linking the to-be-freed element into node_to_free list
and invoking free_htab_elem() for these element after unlock. It is safe
to reuse batch_flink as the link for node_to_free, because these
elements have been removed from the hash llist.
Because htab of maps doesn't support lookup_and_delete operation,
__htab_map_lookup_and_delete_elem() doesn't have the problem, so kept
it as
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: Fix oops due to NULL pointer dereference in brcmf_sdiod_sglist_rw()
This patch fixes a NULL pointer dereference bug in brcmfmac that occurs
when a high 'sd_sgentry_align' value applies (e.g. 512) and a lot of queued SKBs
are sent from the pkt queue.
The problem is the number of entries in the pre-allocated sgtable, it is
nents = max(rxglom_size, txglom_size) + max(rxglom_size, txglom_size) >> 4 + 1.
Given the default [rt]xglom_size=32 it's actually 35 which is too small.
Worst case, the pkt queue can end up with 64 SKBs. This occurs when a new SKB
is added for each original SKB if tailroom isn't enough to hold tail_pad.
At least one sg entry is needed for each SKB. So, eventually the "skb_queue_walk loop"
in brcmf_sdiod_sglist_rw may run out of sg entries. This makes sg_next return
NULL and this causes the oops.
The patch sets nents to max(rxglom_size, txglom_size) * 2 to be able handle
the worst-case.
Btw. this requires only 64-35=29 * 16 (or 20 if CONFIG_NEED_SG_DMA_LENGTH) = 464
additional bytes of memory.
In the Linux kernel, the following vulnerability has been resolved:
jfs: add a check to prevent array-index-out-of-bounds in dbAdjTree
When the value of lp is 0 at the beginning of the for loop, it will
become negative in the next assignment and we should bail out.
In the Linux kernel, the following vulnerability has been resolved:
jfs: fix array-index-out-of-bounds in jfs_readdir
The stbl might contain some invalid values. Added a check to
return error code in that case.
In the Linux kernel, the following vulnerability has been resolved:
btrfs: ref-verify: fix use-after-free after invalid ref action
At btrfs_ref_tree_mod() after we successfully inserted the new ref entry
(local variable 'ref') into the respective block entry's rbtree (local
variable 'be'), if we find an unexpected action of BTRFS_DROP_DELAYED_REF,
we error out and free the ref entry without removing it from the block
entry's rbtree. Then in the error path of btrfs_ref_tree_mod() we call
btrfs_free_ref_cache(), which iterates over all block entries and then
calls free_block_entry() for each one, and there we will trigger a
use-after-free when we are called against the block entry to which we
added the freed ref entry to its rbtree, since the rbtree still points
to the block entry, as we didn't remove it from the rbtree before freeing
it in the error path at btrfs_ref_tree_mod(). Fix this by removing the
new ref entry from the rbtree before freeing it.
Syzbot report this with the following stack traces:
BTRFS error (device loop0 state EA): Ref action 2, root 5, ref_root 0, parent 8564736, owner 0, offset 0, num_refs 18446744073709551615
__btrfs_mod_ref+0x7dd/0xac0 fs/btrfs/extent-tree.c:2523
update_ref_for_cow+0x9cd/0x11f0 fs/btrfs/ctree.c:512
btrfs_force_cow_block+0x9f6/0x1da0 fs/btrfs/ctree.c:594
btrfs_cow_block+0x35e/0xa40 fs/btrfs/ctree.c:754
btrfs_search_slot+0xbdd/0x30d0 fs/btrfs/ctree.c:2116
btrfs_insert_empty_items+0x9c/0x1a0 fs/btrfs/ctree.c:4314
btrfs_insert_empty_item fs/btrfs/ctree.h:669 [inline]
btrfs_insert_orphan_item+0x1f1/0x320 fs/btrfs/orphan.c:23
btrfs_orphan_add+0x6d/0x1a0 fs/btrfs/inode.c:3482
btrfs_unlink+0x267/0x350 fs/btrfs/inode.c:4293
vfs_unlink+0x365/0x650 fs/namei.c:4469
do_unlinkat+0x4ae/0x830 fs/namei.c:4533
__do_sys_unlinkat fs/namei.c:4576 [inline]
__se_sys_unlinkat fs/namei.c:4569 [inline]
__x64_sys_unlinkat+0xcc/0xf0 fs/namei.c:4569
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
BTRFS error (device loop0 state EA): Ref action 1, root 5, ref_root 5, parent 0, owner 260, offset 0, num_refs 1
__btrfs_mod_ref+0x76b/0xac0 fs/btrfs/extent-tree.c:2521
update_ref_for_cow+0x96a/0x11f0
btrfs_force_cow_block+0x9f6/0x1da0 fs/btrfs/ctree.c:594
btrfs_cow_block+0x35e/0xa40 fs/btrfs/ctree.c:754
btrfs_search_slot+0xbdd/0x30d0 fs/btrfs/ctree.c:2116
btrfs_lookup_inode+0xdc/0x480 fs/btrfs/inode-item.c:411
__btrfs_update_delayed_inode+0x1e7/0xb90 fs/btrfs/delayed-inode.c:1030
btrfs_update_delayed_inode fs/btrfs/delayed-inode.c:1114 [inline]
__btrfs_commit_inode_delayed_items+0x2318/0x24a0 fs/btrfs/delayed-inode.c:1137
__btrfs_run_delayed_items+0x213/0x490 fs/btrfs/delayed-inode.c:1171
btrfs_commit_transaction+0x8a8/0x3740 fs/btrfs/transaction.c:2313
prepare_to_relocate+0x3c4/0x4c0 fs/btrfs/relocation.c:3586
relocate_block_group+0x16c/0xd40 fs/btrfs/relocation.c:3611
btrfs_relocate_block_group+0x77d/0xd90 fs/btrfs/relocation.c:4081
btrfs_relocate_chunk+0x12c/0x3b0 fs/btrfs/volumes.c:3377
__btrfs_balance+0x1b0f/0x26b0 fs/btrfs/volumes.c:4161
btrfs_balance+0xbdc/0x10c0 fs/btrfs/volumes.c:4538
BTRFS error (device loop0 state EA): Ref action 2, root 5, ref_root 0, parent 8564736, owner 0, offset 0, num_refs 18446744073709551615
__btrfs_mod_ref+0x7dd/0xac0 fs/btrfs/extent-tree.c:2523
update_ref_for_cow+0x9cd/0x11f0 fs/btrfs/ctree.c:512
btrfs_force_cow_block+0x9f6/0x1da0 fs/btrfs/ctree.c:594
btrfs_cow_block+0x35e/0xa40 fs/btrfs/ctree.c:754
btrfs_search_slot+0xbdd/0x30d0 fs/btrfs/ctree.c:2116
btrfs_lookup_inode+0xdc/0x480 fs/btrfs/inode-item.c:411
__btrfs_update_delayed_inode+0x1e7/0xb90 fs/btrfs/delayed-inode.c:1030
btrfs_update_delayed_i
---truncated---