In the Linux kernel, the following vulnerability has been resolved:
fs/buffer: fix use-after-free when call bh_read() helper
There's issue as follows:
BUG: KASAN: stack-out-of-bounds in end_buffer_read_sync+0xe3/0x110
Read of size 8 at addr ffffc9000168f7f8 by task swapper/3/0
CPU: 3 UID: 0 PID: 0 Comm: swapper/3 Not tainted 6.16.0-862.14.0.6.x86_64
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
Call Trace:
<IRQ>
dump_stack_lvl+0x55/0x70
print_address_description.constprop.0+0x2c/0x390
print_report+0xb4/0x270
kasan_report+0xb8/0xf0
end_buffer_read_sync+0xe3/0x110
end_bio_bh_io_sync+0x56/0x80
blk_update_request+0x30a/0x720
scsi_end_request+0x51/0x2b0
scsi_io_completion+0xe3/0x480
? scsi_device_unbusy+0x11e/0x160
blk_complete_reqs+0x7b/0x90
handle_softirqs+0xef/0x370
irq_exit_rcu+0xa5/0xd0
sysvec_apic_timer_interrupt+0x6e/0x90
</IRQ>
Above issue happens when do ntfs3 filesystem mount, issue may happens
as follows:
mount IRQ
ntfs_fill_super
read_cache_page
do_read_cache_folio
filemap_read_folio
mpage_read_folio
do_mpage_readpage
ntfs_get_block_vbo
bh_read
submit_bh
wait_on_buffer(bh);
blk_complete_reqs
scsi_io_completion
scsi_end_request
blk_update_request
end_bio_bh_io_sync
end_buffer_read_sync
__end_buffer_read_notouch
unlock_buffer
wait_on_buffer(bh);--> return will return to caller
put_bh
--> trigger stack-out-of-bounds
In the mpage_read_folio() function, the stack variable 'map_bh' is
passed to ntfs_get_block_vbo(). Once unlock_buffer() unlocks and
wait_on_buffer() returns to continue processing, the stack variable
is likely to be reclaimed. Consequently, during the end_buffer_read_sync()
process, calling put_bh() may result in stack overrun.
If the bh is not allocated on the stack, it belongs to a folio. Freeing
a buffer head which belongs to a folio is done by drop_buffers() which
will fail to free buffers which are still locked. So it is safe to call
put_bh() before __end_buffer_read_notouch().
In the Linux kernel, the following vulnerability has been resolved:
netfilter: ctnetlink: fix refcount leak on table dump
There is a reference count leak in ctnetlink_dump_table():
if (res < 0) {
nf_conntrack_get(&ct->ct_general); // HERE
cb->args[1] = (unsigned long)ct;
...
While its very unlikely, its possible that ct == last.
If this happens, then the refcount of ct was already incremented.
This 2nd increment is never undone.
This prevents the conntrack object from being released, which in turn
keeps prevents cnet->count from dropping back to 0.
This will then block the netns dismantle (or conntrack rmmod) as
nf_conntrack_cleanup_net_list() will wait forever.
This can be reproduced by running conntrack_resize.sh selftest in a loop.
It takes ~20 minutes for me on a preemptible kernel on average before
I see a runaway kworker spinning in nf_conntrack_cleanup_net_list.
One fix would to change this to:
if (res < 0) {
if (ct != last)
nf_conntrack_get(&ct->ct_general);
But this reference counting isn't needed in the first place.
We can just store a cookie value instead.
A followup patch will do the same for ctnetlink_exp_dump_table,
it looks to me as if this has the same problem and like
ctnetlink_dump_table, we only need a 'skip hint', not the actual
object so we can apply the same cookie strategy there as well.
In the Linux kernel, the following vulnerability has been resolved:
gfs2: Validate i_depth for exhash directories
A fuzzer test introduced corruption that ends up with a depth of 0 in
dir_e_read(), causing an undefined shift by 32 at:
index = hash >> (32 - dip->i_depth);
As calculated in an open-coded way in dir_make_exhash(), the minimum
depth for an exhash directory is ilog2(sdp->sd_hash_ptrs) and 0 is
invalid as sdp->sd_hash_ptrs is fixed as sdp->bsize / 16 at mount time.
So we can avoid the undefined behaviour by checking for depth values
lower than the minimum in gfs2_dinode_in(). Values greater than the
maximum are already being checked for there.
Also switch the calculation in dir_make_exhash() to use ilog2() to
clarify how the depth is calculated.
Tested with the syzkaller repro.c and xfstests '-g quick'.
In the Linux kernel, the following vulnerability has been resolved:
rcu/nocb: Fix possible invalid rdp's->nocb_cb_kthread pointer access
In the preparation stage of CPU online, if the corresponding
the rdp's->nocb_cb_kthread does not exist, will be created,
there is a situation where the rdp's rcuop kthreads creation fails,
and then de-offload this CPU's rdp, does not assign this CPU's
rdp->nocb_cb_kthread pointer, but this rdp's->nocb_gp_rdp and
rdp's->rdp_gp->nocb_gp_kthread is still valid.
This will cause the subsequent re-offload operation of this offline
CPU, which will pass the conditional check and the kthread_unpark()
will access invalid rdp's->nocb_cb_kthread pointer.
This commit therefore use rdp's->nocb_gp_kthread instead of
rdp_gp's->nocb_gp_kthread for safety check.
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pm: fix null pointer access
Writing a string without delimiters (' ', '\n', '\0') to the under
gpu_od/fan_ctrl sysfs or pp_power_profile_mode for the CUSTOM profile
will result in a null pointer dereference.
In the Linux kernel, the following vulnerability has been resolved:
loop: Avoid updating block size under exclusive owner
Syzbot came up with a reproducer where a loop device block size is
changed underneath a mounted filesystem. This causes a mismatch between
the block device block size and the block size stored in the superblock
causing confusion in various places such as fs/buffer.c. The particular
issue triggered by syzbot was a warning in __getblk_slow() due to
requested buffer size not matching block device block size.
Fix the problem by getting exclusive hold of the loop device to change
its block size. This fails if somebody (such as filesystem) has already
an exclusive ownership of the block device and thus prevents modifying
the loop device under some exclusive owner which doesn't expect it.
In the Linux kernel, the following vulnerability has been resolved:
scsi: libiscsi: Initialize iscsi_conn->dd_data only if memory is allocated
In case of an ib_fast_reg_mr allocation failure during iSER setup, the
machine hits a panic because iscsi_conn->dd_data is initialized
unconditionally, even when no memory is allocated (dd_size == 0). This
leads invalid pointer dereference during connection teardown.
Fix by setting iscsi_conn->dd_data only if memory is actually allocated.
Panic trace:
------------
iser: iser_create_fastreg_desc: Failed to allocate ib_fast_reg_mr err=-12
iser: iser_alloc_rx_descriptors: failed allocating rx descriptors / data buffers
BUG: unable to handle page fault for address: fffffffffffffff8
RIP: 0010:swake_up_locked.part.5+0xa/0x40
Call Trace:
complete+0x31/0x40
iscsi_iser_conn_stop+0x88/0xb0 [ib_iser]
iscsi_stop_conn+0x66/0xc0 [scsi_transport_iscsi]
iscsi_if_stop_conn+0x14a/0x150 [scsi_transport_iscsi]
iscsi_if_rx+0x1135/0x1834 [scsi_transport_iscsi]
? netlink_lookup+0x12f/0x1b0
? netlink_deliver_tap+0x2c/0x200
netlink_unicast+0x1ab/0x280
netlink_sendmsg+0x257/0x4f0
? _copy_from_user+0x29/0x60
sock_sendmsg+0x5f/0x70
In the Linux kernel, the following vulnerability has been resolved:
fbdev: Fix vmalloc out-of-bounds write in fast_imageblit
This issue triggers when a userspace program does an ioctl
FBIOPUT_CON2FBMAP by passing console number and frame buffer number.
Ideally this maps console to frame buffer and updates the screen if
console is visible.
As part of mapping it has to do resize of console according to frame
buffer info. if this resize fails and returns from vc_do_resize() and
continues further. At this point console and new frame buffer are mapped
and sets display vars. Despite failure still it continue to proceed
updating the screen at later stages where vc_data is related to previous
frame buffer and frame buffer info and display vars are mapped to new
frame buffer and eventully leading to out-of-bounds write in
fast_imageblit(). This bheviour is excepted only when fg_console is
equal to requested console which is a visible console and updates screen
with invalid struct references in fbcon_putcs().