Vulnerabilities
Vulnerable Software
Linux:  >> Linux Kernel  >> 2.6.26  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: drm/amd/pm: fix null pointer access Writing a string without delimiters (' ', '\n', '\0') to the under gpu_od/fan_ctrl sysfs or pp_power_profile_mode for the CUSTOM profile will result in a null pointer dereference.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-04
In the Linux kernel, the following vulnerability has been resolved: loop: Avoid updating block size under exclusive owner Syzbot came up with a reproducer where a loop device block size is changed underneath a mounted filesystem. This causes a mismatch between the block device block size and the block size stored in the superblock causing confusion in various places such as fs/buffer.c. The particular issue triggered by syzbot was a warning in __getblk_slow() due to requested buffer size not matching block device block size. Fix the problem by getting exclusive hold of the loop device to change its block size. This fails if somebody (such as filesystem) has already an exclusive ownership of the block device and thus prevents modifying the loop device under some exclusive owner which doesn't expect it.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-09-04
In the Linux kernel, the following vulnerability has been resolved: net: appletalk: Fix use-after-free in AARP proxy probe The AARP proxy‐probe routine (aarp_proxy_probe_network) sends a probe, releases the aarp_lock, sleeps, then re-acquires the lock. During that window an expire timer thread (__aarp_expire_timer) can remove and kfree() the same entry, leading to a use-after-free. race condition: cpu 0 | cpu 1 atalk_sendmsg() | atif_proxy_probe_device() aarp_send_ddp() | aarp_proxy_probe_network() mod_timer() | lock(aarp_lock) // LOCK!! timeout around 200ms | alloc(aarp_entry) and then call | proxies[hash] = aarp_entry aarp_expire_timeout() | aarp_send_probe() | unlock(aarp_lock) // UNLOCK!! lock(aarp_lock) // LOCK!! | msleep(100); __aarp_expire_timer(&proxies[ct]) | free(aarp_entry) | unlock(aarp_lock) // UNLOCK!! | | lock(aarp_lock) // LOCK!! | UAF aarp_entry !! ================================================================== BUG: KASAN: slab-use-after-free in aarp_proxy_probe_network+0x560/0x630 net/appletalk/aarp.c:493 Read of size 4 at addr ffff8880123aa360 by task repro/13278 CPU: 3 UID: 0 PID: 13278 Comm: repro Not tainted 6.15.2 #3 PREEMPT(full) Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x116/0x1b0 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:408 [inline] print_report+0xc1/0x630 mm/kasan/report.c:521 kasan_report+0xca/0x100 mm/kasan/report.c:634 aarp_proxy_probe_network+0x560/0x630 net/appletalk/aarp.c:493 atif_proxy_probe_device net/appletalk/ddp.c:332 [inline] atif_ioctl+0xb58/0x16c0 net/appletalk/ddp.c:857 atalk_ioctl+0x198/0x2f0 net/appletalk/ddp.c:1818 sock_do_ioctl+0xdc/0x260 net/socket.c:1190 sock_ioctl+0x239/0x6a0 net/socket.c:1311 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:906 [inline] __se_sys_ioctl fs/ioctl.c:892 [inline] __x64_sys_ioctl+0x194/0x200 fs/ioctl.c:892 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xcb/0x250 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f </TASK> Allocated: aarp_alloc net/appletalk/aarp.c:382 [inline] aarp_proxy_probe_network+0xd8/0x630 net/appletalk/aarp.c:468 atif_proxy_probe_device net/appletalk/ddp.c:332 [inline] atif_ioctl+0xb58/0x16c0 net/appletalk/ddp.c:857 atalk_ioctl+0x198/0x2f0 net/appletalk/ddp.c:1818 Freed: kfree+0x148/0x4d0 mm/slub.c:4841 __aarp_expire net/appletalk/aarp.c:90 [inline] __aarp_expire_timer net/appletalk/aarp.c:261 [inline] aarp_expire_timeout+0x480/0x6e0 net/appletalk/aarp.c:317 The buggy address belongs to the object at ffff8880123aa300 which belongs to the cache kmalloc-192 of size 192 The buggy address is located 96 bytes inside of freed 192-byte region [ffff8880123aa300, ffff8880123aa3c0) Memory state around the buggy address: ffff8880123aa200: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff8880123aa280: 00 00 00 00 fc fc fc fc fc fc fc fc fc fc fc fc >ffff8880123aa300: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff8880123aa380: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc ffff8880123aa400: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ==================================================================
CVSS Score
7.8
EPSS Score
0.001
Published
2025-08-22
In the Linux kernel, the following vulnerability has been resolved: net/packet: fix a race in packet_set_ring() and packet_notifier() When packet_set_ring() releases po->bind_lock, another thread can run packet_notifier() and process an NETDEV_UP event. This race and the fix are both similar to that of commit 15fe076edea7 ("net/packet: fix a race in packet_bind() and packet_notifier()"). There too the packet_notifier NETDEV_UP event managed to run while a po->bind_lock critical section had to be temporarily released. And the fix was similarly to temporarily set po->num to zero to keep the socket unhooked until the lock is retaken. The po->bind_lock in packet_set_ring and packet_notifier precede the introduction of git history.
CVSS Score
4.7
EPSS Score
0.001
Published
2025-08-22
In the Linux kernel, the following vulnerability has been resolved: iwlwifi: Add missing check for alloc_ordered_workqueue Add check for the return value of alloc_ordered_workqueue since it may return NULL pointer.
CVSS Score
5.5
EPSS Score
0.001
Published
2025-08-19
In the Linux kernel, the following vulnerability has been resolved: HID: core: Harden s32ton() against conversion to 0 bits Testing by the syzbot fuzzer showed that the HID core gets a shift-out-of-bounds exception when it tries to convert a 32-bit quantity to a 0-bit quantity. Ideally this should never occur, but there are buggy devices and some might have a report field with size set to zero; we shouldn't reject the report or the device just because of that. Instead, harden the s32ton() routine so that it returns a reasonable result instead of crashing when it is called with the number of bits set to 0 -- the same as what snto32() does.
CVSS Score
7.1
EPSS Score
0.0
Published
2025-08-19
In the Linux kernel, the following vulnerability has been resolved: net: appletalk: Fix device refcount leak in atrtr_create() When updating an existing route entry in atrtr_create(), the old device reference was not being released before assigning the new device, leading to a device refcount leak. Fix this by calling dev_put() to release the old device reference before holding the new one.
CVSS Score
5.5
EPSS Score
0.001
Published
2025-08-16
In the Linux kernel, the following vulnerability has been resolved: atm: clip: Fix memory leak of struct clip_vcc. ioctl(ATMARP_MKIP) allocates struct clip_vcc and set it to vcc->user_back. The code assumes that vcc_destroy_socket() passes NULL skb to vcc->push() when the socket is close()d, and then clip_push() frees clip_vcc. However, ioctl(ATMARPD_CTRL) sets NULL to vcc->push() in atm_init_atmarp(), resulting in memory leak. Let's serialise two ioctl() by lock_sock() and check vcc->push() in atm_init_atmarp() to prevent memleak.
CVSS Score
5.5
EPSS Score
0.001
Published
2025-08-16
In the Linux kernel, the following vulnerability has been resolved: iio: common: st_sensors: Fix use of uninitialize device structs Throughout the various probe functions &indio_dev->dev is used before it is initialized. This caused a kernel panic in st_sensors_power_enable() when the call to devm_regulator_bulk_get_enable() fails and then calls dev_err_probe() with the uninitialized device. This seems to only cause a panic with dev_err_probe(), dev_err(), dev_warn() and dev_info() don't seem to cause a panic, but are fixed as well. The issue is reported and traced here: [1]
CVSS Score
5.5
EPSS Score
0.0
Published
2025-08-16
In the Linux kernel, the following vulnerability has been resolved: wifi: zd1211rw: Fix potential NULL pointer dereference in zd_mac_tx_to_dev() There is a potential NULL pointer dereference in zd_mac_tx_to_dev(). For example, the following is possible: T0 T1 zd_mac_tx_to_dev() /* len == skb_queue_len(q) */ while (len > ZD_MAC_MAX_ACK_WAITERS) { filter_ack() spin_lock_irqsave(&q->lock, flags); /* position == skb_queue_len(q) */ for (i=1; i<position; i++) skb = __skb_dequeue(q) if (mac->type == NL80211_IFTYPE_AP) skb = __skb_dequeue(q); spin_unlock_irqrestore(&q->lock, flags); skb_dequeue() -> NULL Since there is a small gap between checking skb queue length and skb being unconditionally dequeued in zd_mac_tx_to_dev(), skb_dequeue() can return NULL. Then the pointer is passed to zd_mac_tx_status() where it is dereferenced. In order to avoid potential NULL pointer dereference due to situations like above, check if skb is not NULL before passing it to zd_mac_tx_status(). Found by Linux Verification Center (linuxtesting.org) with SVACE.
CVSS Score
5.5
EPSS Score
0.001
Published
2025-08-16


Contact Us

Shodan ® - All rights reserved