Vulnerabilities
Vulnerable Software
Linux:  >> Linux Kernel  >> 5.10.161  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: iommu/amd: Fix pci device refcount leak in ppr_notifier() As comment of pci_get_domain_bus_and_slot() says, it returns a pci device with refcount increment, when finish using it, the caller must decrement the reference count by calling pci_dev_put(). So call it before returning from ppr_notifier() to avoid refcount leak.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-04
In the Linux kernel, the following vulnerability has been resolved: drm/msm: fix use-after-free on probe deferral The bridge counter was never reset when tearing down the DRM device so that stale pointers to deallocated structures would be accessed on the next tear down (e.g. after a second late bind deferral). Given enough bridges and a few probe deferrals this could currently also lead to data beyond the bridge array being corrupted. Patchwork: https://patchwork.freedesktop.org/patch/502665/
CVSS Score
7.8
EPSS Score
0.0
Published
2025-10-04
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix crash when I/O abort times out While performing CPU hotplug, a crash with the following stack was seen: Call Trace: qla24xx_process_response_queue+0x42a/0x970 [qla2xxx] qla2x00_start_nvme_mq+0x3a2/0x4b0 [qla2xxx] qla_nvme_post_cmd+0x166/0x240 [qla2xxx] nvme_fc_start_fcp_op.part.0+0x119/0x2e0 [nvme_fc] blk_mq_dispatch_rq_list+0x17b/0x610 __blk_mq_sched_dispatch_requests+0xb0/0x140 blk_mq_sched_dispatch_requests+0x30/0x60 __blk_mq_run_hw_queue+0x35/0x90 __blk_mq_delay_run_hw_queue+0x161/0x180 blk_execute_rq+0xbe/0x160 __nvme_submit_sync_cmd+0x16f/0x220 [nvme_core] nvmf_connect_admin_queue+0x11a/0x170 [nvme_fabrics] nvme_fc_create_association.cold+0x50/0x3dc [nvme_fc] nvme_fc_connect_ctrl_work+0x19/0x30 [nvme_fc] process_one_work+0x1e8/0x3c0 On abort timeout, completion was called without checking if the I/O was already completed. Verify that I/O and abort request are indeed outstanding before attempting completion.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-04
In the Linux kernel, the following vulnerability has been resolved: dm cache: Fix UAF in destroy() Dm_cache also has the same UAF problem when dm_resume() and dm_destroy() are concurrent. Therefore, cancelling timer again in destroy().
CVSS Score
7.8
EPSS Score
0.0
Published
2025-10-04
In the Linux kernel, the following vulnerability has been resolved: binfmt_misc: fix shift-out-of-bounds in check_special_flags UBSAN reported a shift-out-of-bounds warning: left shift of 1 by 31 places cannot be represented in type 'int' Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x8d/0xcf lib/dump_stack.c:106 ubsan_epilogue+0xa/0x44 lib/ubsan.c:151 __ubsan_handle_shift_out_of_bounds+0x1e7/0x208 lib/ubsan.c:322 check_special_flags fs/binfmt_misc.c:241 [inline] create_entry fs/binfmt_misc.c:456 [inline] bm_register_write+0x9d3/0xa20 fs/binfmt_misc.c:654 vfs_write+0x11e/0x580 fs/read_write.c:582 ksys_write+0xcf/0x120 fs/read_write.c:637 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x34/0x80 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x4194e1 Since the type of Node's flags is unsigned long, we should define these macros with same type too.
CVSS Score
7.1
EPSS Score
0.0
Published
2025-10-04
In the Linux kernel, the following vulnerability has been resolved: ext4: add EXT4_IGET_BAD flag to prevent unexpected bad inode There are many places that will get unhappy (and crash) when ext4_iget() returns a bad inode. However, if iget the boot loader inode, allows a bad inode to be returned, because the inode may not be initialized. This mechanism can be used to bypass some checks and cause panic. To solve this problem, we add a special iget flag EXT4_IGET_BAD. Only with this flag we'd be returning bad inode from ext4_iget(), otherwise we always return the error code if the inode is bad inode.(suggested by Jan Kara)
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-04
In the Linux kernel, the following vulnerability has been resolved: net: ethernet: ti: Fix return type of netcp_ndo_start_xmit() With clang's kernel control flow integrity (kCFI, CONFIG_CFI_CLANG), indirect call targets are validated against the expected function pointer prototype to make sure the call target is valid to help mitigate ROP attacks. If they are not identical, there is a failure at run time, which manifests as either a kernel panic or thread getting killed. A proposed warning in clang aims to catch these at compile time, which reveals: drivers/net/ethernet/ti/netcp_core.c:1944:21: error: incompatible function pointer types initializing 'netdev_tx_t (*)(struct sk_buff *, struct net_device *)' (aka 'enum netdev_tx (*)(struct sk_buff *, struct net_device *)') with an expression of type 'int (struct sk_buff *, struct net_device *)' [-Werror,-Wincompatible-function-pointer-types-strict] .ndo_start_xmit = netcp_ndo_start_xmit, ^~~~~~~~~~~~~~~~~~~~ 1 error generated. ->ndo_start_xmit() in 'struct net_device_ops' expects a return type of 'netdev_tx_t', not 'int'. Adjust the return type of netcp_ndo_start_xmit() to match the prototype's to resolve the warning and CFI failure.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-04
In the Linux kernel, the following vulnerability has been resolved: block, bfq: fix possible uaf for 'bfqq->bic' Our test report a uaf for 'bfqq->bic' in 5.10: ================================================================== BUG: KASAN: use-after-free in bfq_select_queue+0x378/0xa30 CPU: 6 PID: 2318352 Comm: fsstress Kdump: loaded Not tainted 5.10.0-60.18.0.50.h602.kasan.eulerosv2r11.x86_64 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58-20220320_160524-szxrtosci10000 04/01/2014 Call Trace: bfq_select_queue+0x378/0xa30 bfq_dispatch_request+0xe8/0x130 blk_mq_do_dispatch_sched+0x62/0xb0 __blk_mq_sched_dispatch_requests+0x215/0x2a0 blk_mq_sched_dispatch_requests+0x8f/0xd0 __blk_mq_run_hw_queue+0x98/0x180 __blk_mq_delay_run_hw_queue+0x22b/0x240 blk_mq_run_hw_queue+0xe3/0x190 blk_mq_sched_insert_requests+0x107/0x200 blk_mq_flush_plug_list+0x26e/0x3c0 blk_finish_plug+0x63/0x90 __iomap_dio_rw+0x7b5/0x910 iomap_dio_rw+0x36/0x80 ext4_dio_read_iter+0x146/0x190 [ext4] ext4_file_read_iter+0x1e2/0x230 [ext4] new_sync_read+0x29f/0x400 vfs_read+0x24e/0x2d0 ksys_read+0xd5/0x1b0 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x61/0xc6 Commit 3bc5e683c67d ("bfq: Split shared queues on move between cgroups") changes that move process to a new cgroup will allocate a new bfqq to use, however, the old bfqq and new bfqq can point to the same bic: 1) Initial state, two process with io in the same cgroup. Process 1 Process 2 (BIC1) (BIC2) | Λ | Λ | | | | V | V | bfqq1 bfqq2 2) bfqq1 is merged to bfqq2. Process 1 Process 2 (BIC1) (BIC2) | | \-------------\| V bfqq1 bfqq2(coop) 3) Process 1 exit, then issue new io(denoce IOA) from Process 2. (BIC2) | Λ | | V | bfqq2(coop) 4) Before IOA is completed, move Process 2 to another cgroup and issue io. Process 2 (BIC2) Λ |\--------------\ | V bfqq2 bfqq3 Now that BIC2 points to bfqq3, while bfqq2 and bfqq3 both point to BIC2. If all the requests are completed, and Process 2 exit, BIC2 will be freed while there is no guarantee that bfqq2 will be freed before BIC2. Fix the problem by clearing bfqq->bic while bfqq is detached from bic.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-10-04
In the Linux kernel, the following vulnerability has been resolved: ntb_netdev: Use dev_kfree_skb_any() in interrupt context TX/RX callback handlers (ntb_netdev_tx_handler(), ntb_netdev_rx_handler()) can be called in interrupt context via the DMA framework when the respective DMA operations have completed. As such, any calls by these routines to free skb's, should use the interrupt context safe dev_kfree_skb_any() function. Previously, these callback handlers would call the interrupt unsafe version of dev_kfree_skb(). This has not presented an issue on Intel IOAT DMA engines as that driver utilizes tasklets rather than a hard interrupt handler, like the AMD PTDMA DMA driver. On AMD systems, a kernel WARNING message is encountered, which is being issued from skb_release_head_state() due to in_hardirq() being true. Besides the user visible WARNING from the kernel, the other symptom of this bug was that TCP/IP performance across the ntb_netdev interface was very poor, i.e. approximately an order of magnitude below what was expected. With the repair to use dev_kfree_skb_any(), kernel WARNINGs from skb_release_head_state() ceased and TCP/IP performance, as measured by iperf, was on par with expected results, approximately 20 Gb/s on AMD Milan based server. Note that this performance is comparable with Intel based servers.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-10-04
In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix shift-out-of-bounds/overflow in nilfs_sb2_bad_offset() Patch series "nilfs2: fix UBSAN shift-out-of-bounds warnings on mount time". The first patch fixes a bug reported by syzbot, and the second one fixes the remaining bug of the same kind. Although they are triggered by the same super block data anomaly, I divided it into the above two because the details of the issues and how to fix it are different. Both are required to eliminate the shift-out-of-bounds issues at mount time. This patch (of 2): If the block size exponent information written in an on-disk superblock is corrupted, nilfs_sb2_bad_offset helper function can trigger shift-out-of-bounds warning followed by a kernel panic (if panic_on_warn is set): shift exponent 38983 is too large for 64-bit type 'unsigned long long' Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x1b1/0x28e lib/dump_stack.c:106 ubsan_epilogue lib/ubsan.c:151 [inline] __ubsan_handle_shift_out_of_bounds+0x33d/0x3b0 lib/ubsan.c:322 nilfs_sb2_bad_offset fs/nilfs2/the_nilfs.c:449 [inline] nilfs_load_super_block+0xdf5/0xe00 fs/nilfs2/the_nilfs.c:523 init_nilfs+0xb7/0x7d0 fs/nilfs2/the_nilfs.c:577 nilfs_fill_super+0xb1/0x5d0 fs/nilfs2/super.c:1047 nilfs_mount+0x613/0x9b0 fs/nilfs2/super.c:1317 ... In addition, since nilfs_sb2_bad_offset() performs multiplication without considering the upper bound, the computation may overflow if the disk layout parameters are not normal. This fixes these issues by inserting preliminary sanity checks for those parameters and by converting the comparison from one involving multiplication and left bit-shifting to one using division and right bit-shifting.
CVSS Score
7.1
EPSS Score
0.0
Published
2025-10-04


Contact Us

Shodan ® - All rights reserved