In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix stackmap overflow check on 32-bit arches
The stackmap code relies on roundup_pow_of_two() to compute the number
of hash buckets, and contains an overflow check by checking if the
resulting value is 0. However, on 32-bit arches, the roundup code itself
can overflow by doing a 32-bit left-shift of an unsigned long value,
which is undefined behaviour, so it is not guaranteed to truncate
neatly. This was triggered by syzbot on the DEVMAP_HASH type, which
contains the same check, copied from the hashtab code.
The commit in the fixes tag actually attempted to fix this, but the fix
did not account for the UB, so the fix only works on CPUs where an
overflow does result in a neat truncation to zero, which is not
guaranteed. Checking the value before rounding does not have this
problem.
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_core: Fix possible buffer overflow
struct hci_dev_info has a fixed size name[8] field so in the event that
hdev->name is bigger than that strcpy would attempt to write past its
size, so this fixes this problem by switching to use strscpy.
In the Linux kernel, the following vulnerability has been resolved:
wifi: wilc1000: prevent use-after-free on vif when cleaning up all interfaces
wilc_netdev_cleanup currently triggers a KASAN warning, which can be
observed on interface registration error path, or simply by
removing the module/unbinding device from driver:
echo spi0.1 > /sys/bus/spi/drivers/wilc1000_spi/unbind
==================================================================
BUG: KASAN: slab-use-after-free in wilc_netdev_cleanup+0x508/0x5cc
Read of size 4 at addr c54d1ce8 by task sh/86
CPU: 0 PID: 86 Comm: sh Not tainted 6.8.0-rc1+ #117
Hardware name: Atmel SAMA5
unwind_backtrace from show_stack+0x18/0x1c
show_stack from dump_stack_lvl+0x34/0x58
dump_stack_lvl from print_report+0x154/0x500
print_report from kasan_report+0xac/0xd8
kasan_report from wilc_netdev_cleanup+0x508/0x5cc
wilc_netdev_cleanup from wilc_bus_remove+0xc8/0xec
wilc_bus_remove from spi_remove+0x8c/0xac
spi_remove from device_release_driver_internal+0x434/0x5f8
device_release_driver_internal from unbind_store+0xbc/0x108
unbind_store from kernfs_fop_write_iter+0x398/0x584
kernfs_fop_write_iter from vfs_write+0x728/0xf88
vfs_write from ksys_write+0x110/0x1e4
ksys_write from ret_fast_syscall+0x0/0x1c
[...]
Allocated by task 1:
kasan_save_track+0x30/0x5c
__kasan_kmalloc+0x8c/0x94
__kmalloc_node+0x1cc/0x3e4
kvmalloc_node+0x48/0x180
alloc_netdev_mqs+0x68/0x11dc
alloc_etherdev_mqs+0x28/0x34
wilc_netdev_ifc_init+0x34/0x8ec
wilc_cfg80211_init+0x690/0x910
wilc_bus_probe+0xe0/0x4a0
spi_probe+0x158/0x1b0
really_probe+0x270/0xdf4
__driver_probe_device+0x1dc/0x580
driver_probe_device+0x60/0x140
__driver_attach+0x228/0x5d4
bus_for_each_dev+0x13c/0x1a8
bus_add_driver+0x2a0/0x608
driver_register+0x24c/0x578
do_one_initcall+0x180/0x310
kernel_init_freeable+0x424/0x484
kernel_init+0x20/0x148
ret_from_fork+0x14/0x28
Freed by task 86:
kasan_save_track+0x30/0x5c
kasan_save_free_info+0x38/0x58
__kasan_slab_free+0xe4/0x140
kfree+0xb0/0x238
device_release+0xc0/0x2a8
kobject_put+0x1d4/0x46c
netdev_run_todo+0x8fc/0x11d0
wilc_netdev_cleanup+0x1e4/0x5cc
wilc_bus_remove+0xc8/0xec
spi_remove+0x8c/0xac
device_release_driver_internal+0x434/0x5f8
unbind_store+0xbc/0x108
kernfs_fop_write_iter+0x398/0x584
vfs_write+0x728/0xf88
ksys_write+0x110/0x1e4
ret_fast_syscall+0x0/0x1c
[...]
David Mosberger-Tan initial investigation [1] showed that this
use-after-free is due to netdevice unregistration during vif list
traversal. When unregistering a net device, since the needs_free_netdev has
been set to true during registration, the netdevice object is also freed,
and as a consequence, the corresponding vif object too, since it is
attached to it as private netdevice data. The next occurrence of the loop
then tries to access freed vif pointer to the list to move forward in the
list.
Fix this use-after-free thanks to two mechanisms:
- navigate in the list with list_for_each_entry_safe, which allows to
safely modify the list as we go through each element. For each element,
remove it from the list with list_del_rcu
- make sure to wait for RCU grace period end after each vif removal to make
sure it is safe to free the corresponding vif too (through
unregister_netdev)
Since we are in a RCU "modifier" path (not a "reader" path), and because
such path is expected not to be concurrent to any other modifier (we are
using the vif_mutex lock), we do not need to use RCU list API, that's why
we can benefit from list_for_each_entry_safe.
[1] https://lore.kernel.org/linux-wireless/ab077dbe58b1ea5de0a3b2ca21f275a07af967d2.camel@egauge.net/
In the Linux kernel, the following vulnerability has been resolved:
packet: annotate data-races around ignore_outgoing
ignore_outgoing is read locklessly from dev_queue_xmit_nit()
and packet_getsockopt()
Add appropriate READ_ONCE()/WRITE_ONCE() annotations.
syzbot reported:
BUG: KCSAN: data-race in dev_queue_xmit_nit / packet_setsockopt
write to 0xffff888107804542 of 1 bytes by task 22618 on cpu 0:
packet_setsockopt+0xd83/0xfd0 net/packet/af_packet.c:4003
do_sock_setsockopt net/socket.c:2311 [inline]
__sys_setsockopt+0x1d8/0x250 net/socket.c:2334
__do_sys_setsockopt net/socket.c:2343 [inline]
__se_sys_setsockopt net/socket.c:2340 [inline]
__x64_sys_setsockopt+0x66/0x80 net/socket.c:2340
do_syscall_64+0xd3/0x1d0
entry_SYSCALL_64_after_hwframe+0x6d/0x75
read to 0xffff888107804542 of 1 bytes by task 27 on cpu 1:
dev_queue_xmit_nit+0x82/0x620 net/core/dev.c:2248
xmit_one net/core/dev.c:3527 [inline]
dev_hard_start_xmit+0xcc/0x3f0 net/core/dev.c:3547
__dev_queue_xmit+0xf24/0x1dd0 net/core/dev.c:4335
dev_queue_xmit include/linux/netdevice.h:3091 [inline]
batadv_send_skb_packet+0x264/0x300 net/batman-adv/send.c:108
batadv_send_broadcast_skb+0x24/0x30 net/batman-adv/send.c:127
batadv_iv_ogm_send_to_if net/batman-adv/bat_iv_ogm.c:392 [inline]
batadv_iv_ogm_emit net/batman-adv/bat_iv_ogm.c:420 [inline]
batadv_iv_send_outstanding_bat_ogm_packet+0x3f0/0x4b0 net/batman-adv/bat_iv_ogm.c:1700
process_one_work kernel/workqueue.c:3254 [inline]
process_scheduled_works+0x465/0x990 kernel/workqueue.c:3335
worker_thread+0x526/0x730 kernel/workqueue.c:3416
kthread+0x1d1/0x210 kernel/kthread.c:388
ret_from_fork+0x4b/0x60 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:243
value changed: 0x00 -> 0x01
Reported by Kernel Concurrency Sanitizer on:
CPU: 1 PID: 27 Comm: kworker/u8:1 Tainted: G W 6.8.0-syzkaller-08073-g480e035fc4c7 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/29/2024
Workqueue: bat_events batadv_iv_send_outstanding_bat_ogm_packet
In the Linux kernel, the following vulnerability has been resolved:
hsr: Fix uninit-value access in hsr_get_node()
KMSAN reported the following uninit-value access issue [1]:
=====================================================
BUG: KMSAN: uninit-value in hsr_get_node+0xa2e/0xa40 net/hsr/hsr_framereg.c:246
hsr_get_node+0xa2e/0xa40 net/hsr/hsr_framereg.c:246
fill_frame_info net/hsr/hsr_forward.c:577 [inline]
hsr_forward_skb+0xe12/0x30e0 net/hsr/hsr_forward.c:615
hsr_dev_xmit+0x1a1/0x270 net/hsr/hsr_device.c:223
__netdev_start_xmit include/linux/netdevice.h:4940 [inline]
netdev_start_xmit include/linux/netdevice.h:4954 [inline]
xmit_one net/core/dev.c:3548 [inline]
dev_hard_start_xmit+0x247/0xa10 net/core/dev.c:3564
__dev_queue_xmit+0x33b8/0x5130 net/core/dev.c:4349
dev_queue_xmit include/linux/netdevice.h:3134 [inline]
packet_xmit+0x9c/0x6b0 net/packet/af_packet.c:276
packet_snd net/packet/af_packet.c:3087 [inline]
packet_sendmsg+0x8b1d/0x9f30 net/packet/af_packet.c:3119
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg net/socket.c:745 [inline]
__sys_sendto+0x735/0xa10 net/socket.c:2191
__do_sys_sendto net/socket.c:2203 [inline]
__se_sys_sendto net/socket.c:2199 [inline]
__x64_sys_sendto+0x125/0x1c0 net/socket.c:2199
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x6d/0x140 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x63/0x6b
Uninit was created at:
slab_post_alloc_hook+0x129/0xa70 mm/slab.h:768
slab_alloc_node mm/slub.c:3478 [inline]
kmem_cache_alloc_node+0x5e9/0xb10 mm/slub.c:3523
kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:560
__alloc_skb+0x318/0x740 net/core/skbuff.c:651
alloc_skb include/linux/skbuff.h:1286 [inline]
alloc_skb_with_frags+0xc8/0xbd0 net/core/skbuff.c:6334
sock_alloc_send_pskb+0xa80/0xbf0 net/core/sock.c:2787
packet_alloc_skb net/packet/af_packet.c:2936 [inline]
packet_snd net/packet/af_packet.c:3030 [inline]
packet_sendmsg+0x70e8/0x9f30 net/packet/af_packet.c:3119
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg net/socket.c:745 [inline]
__sys_sendto+0x735/0xa10 net/socket.c:2191
__do_sys_sendto net/socket.c:2203 [inline]
__se_sys_sendto net/socket.c:2199 [inline]
__x64_sys_sendto+0x125/0x1c0 net/socket.c:2199
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x6d/0x140 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x63/0x6b
CPU: 1 PID: 5033 Comm: syz-executor334 Not tainted 6.7.0-syzkaller-00562-g9f8413c4a66f #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/17/2023
=====================================================
If the packet type ID field in the Ethernet header is either ETH_P_PRP or
ETH_P_HSR, but it is not followed by an HSR tag, hsr_get_skb_sequence_nr()
reads an invalid value as a sequence number. This causes the above issue.
This patch fixes the issue by returning NULL if the Ethernet header is not
followed by an HSR tag.
In the Linux kernel, the following vulnerability has been resolved:
NFSv4.2: fix nfs4_listxattr kernel BUG at mm/usercopy.c:102
A call to listxattr() with a buffer size = 0 returns the actual
size of the buffer needed for a subsequent call. When size > 0,
nfs4_listxattr() does not return an error because either
generic_listxattr() or nfs4_listxattr_nfs4_label() consumes
exactly all the bytes then size is 0 when calling
nfs4_listxattr_nfs4_user() which then triggers the following
kernel BUG:
[ 99.403778] kernel BUG at mm/usercopy.c:102!
[ 99.404063] Internal error: Oops - BUG: 00000000f2000800 [#1] SMP
[ 99.408463] CPU: 0 PID: 3310 Comm: python3 Not tainted 6.6.0-61.fc40.aarch64 #1
[ 99.415827] Call trace:
[ 99.415985] usercopy_abort+0x70/0xa0
[ 99.416227] __check_heap_object+0x134/0x158
[ 99.416505] check_heap_object+0x150/0x188
[ 99.416696] __check_object_size.part.0+0x78/0x168
[ 99.416886] __check_object_size+0x28/0x40
[ 99.417078] listxattr+0x8c/0x120
[ 99.417252] path_listxattr+0x78/0xe0
[ 99.417476] __arm64_sys_listxattr+0x28/0x40
[ 99.417723] invoke_syscall+0x78/0x100
[ 99.417929] el0_svc_common.constprop.0+0x48/0xf0
[ 99.418186] do_el0_svc+0x24/0x38
[ 99.418376] el0_svc+0x3c/0x110
[ 99.418554] el0t_64_sync_handler+0x120/0x130
[ 99.418788] el0t_64_sync+0x194/0x198
[ 99.418994] Code: aa0003e3 d000a3e0 91310000 97f49bdb (d4210000)
Issue is reproduced when generic_listxattr() returns 'system.nfs4_acl',
thus calling lisxattr() with size = 16 will trigger the bug.
Add check on nfs4_listxattr() to return ERANGE error when it is
called with size > 0 and the return value is greater than size.
In the Linux kernel, the following vulnerability has been resolved:
RDMA/srpt: Do not register event handler until srpt device is fully setup
Upon rare occasions, KASAN reports a use-after-free Write
in srpt_refresh_port().
This seems to be because an event handler is registered before the
srpt device is fully setup and a race condition upon error may leave a
partially setup event handler in place.
Instead, only register the event handler after srpt device initialization
is complete.
In the Linux kernel, the following vulnerability has been resolved:
drm/mediatek: Fix a null pointer crash in mtk_drm_crtc_finish_page_flip
It's possible that mtk_crtc->event is NULL in
mtk_drm_crtc_finish_page_flip().
pending_needs_vblank value is set by mtk_crtc->event, but in
mtk_drm_crtc_atomic_flush(), it's is not guarded by the same
lock in mtk_drm_finish_page_flip(), thus a race condition happens.
Consider the following case:
CPU1 CPU2
step 1:
mtk_drm_crtc_atomic_begin()
mtk_crtc->event is not null,
step 1:
mtk_drm_crtc_atomic_flush:
mtk_drm_crtc_update_config(
!!mtk_crtc->event)
step 2:
mtk_crtc_ddp_irq ->
mtk_drm_finish_page_flip:
lock
mtk_crtc->event set to null,
pending_needs_vblank set to false
unlock
pending_needs_vblank set to true,
step 2:
mtk_crtc_ddp_irq ->
mtk_drm_finish_page_flip called again,
pending_needs_vblank is still true
//null pointer
Instead of guarding the entire mtk_drm_crtc_atomic_flush(), it's more
efficient to just check if mtk_crtc->event is null before use.
In the Linux kernel, the following vulnerability has been resolved:
quota: Fix potential NULL pointer dereference
Below race may cause NULL pointer dereference
P1 P2
dquot_free_inode quota_off
drop_dquot_ref
remove_dquot_ref
dquots = i_dquot(inode)
dquots = i_dquot(inode)
srcu_read_lock
dquots[cnt]) != NULL (1)
dquots[type] = NULL (2)
spin_lock(&dquots[cnt]->dq_dqb_lock) (3)
....
If dquot_free_inode(or other routines) checks inode's quota pointers (1)
before quota_off sets it to NULL(2) and use it (3) after that, NULL pointer
dereference will be triggered.
So let's fix it by using a temporary pointer to avoid this issue.