In the Linux kernel, the following vulnerability has been resolved:
net: inet6: do not leave a dangling sk pointer in inet6_create()
sock_init_data() attaches the allocated sk pointer to the provided sock
object. If inet6_create() fails later, the sk object is released, but the
sock object retains the dangling sk pointer, which may cause use-after-free
later.
Clear the sock sk pointer on error.
In the Linux kernel, the following vulnerability has been resolved:
net: inet: do not leave a dangling sk pointer in inet_create()
sock_init_data() attaches the allocated sk object to the provided sock
object. If inet_create() fails later, the sk object is freed, but the
sock object retains the dangling pointer, which may create use-after-free
later.
Clear the sk pointer in the sock object on error.
In the Linux kernel, the following vulnerability has been resolved:
net: ieee802154: do not leave a dangling sk pointer in ieee802154_create()
sock_init_data() attaches the allocated sk object to the provided sock
object. If ieee802154_create() fails later, the allocated sk object is
freed, but the dangling pointer remains in the provided sock object, which
may allow use-after-free.
Clear the sk pointer in the sock object on error.
In the Linux kernel, the following vulnerability has been resolved:
net: af_can: do not leave a dangling sk pointer in can_create()
On error can_create() frees the allocated sk object, but sock_init_data()
has already attached it to the provided sock object. This will leave a
dangling sk pointer in the sock object and may cause use-after-free later.
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: RFCOMM: avoid leaving dangling sk pointer in rfcomm_sock_alloc()
bt_sock_alloc() attaches allocated sk object to the provided sock object.
If rfcomm_dlc_alloc() fails, we release the sk object, but leave the
dangling pointer in the sock object, which may cause use-after-free.
Fix this by swapping calls to bt_sock_alloc() and rfcomm_dlc_alloc().
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: L2CAP: do not leave dangling sk pointer on error in l2cap_sock_create()
bt_sock_alloc() allocates the sk object and attaches it to the provided
sock object. On error l2cap_sock_alloc() frees the sk object, but the
dangling pointer is still attached to the sock object, which may create
use-after-free in other code.
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_core: Fix not checking skb length on hci_acldata_packet
This fixes not checking if skb really contains an ACL header otherwise
the code may attempt to access some uninitilized/invalid memory past the
valid skb->data.
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_conn: Use disable_delayed_work_sync
This makes use of disable_delayed_work_sync instead
cancel_delayed_work_sync as it not only cancel the ongoing work but also
disables new submit which is disarable since the object holding the work
is about to be freed.