In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: DR, fix memory leak in mlx5dr_cmd_create_reformat_ctx
when mlx5_cmd_exec failed in mlx5dr_cmd_create_reformat_ctx, the memory
pointed by 'in' is not released, which will cause memory leak. Move memory
release after mlx5_cmd_exec.
In the Linux kernel, the following vulnerability has been resolved:
Input: raspberrypi-ts - fix refcount leak in rpi_ts_probe
rpi_firmware_get() take reference, we need to release it in error paths
as well. Use devm_rpi_firmware_get() helper to handling the resources.
Also remove the existing rpi_firmware_put().
In the Linux kernel, the following vulnerability has been resolved:
drm/mediatek: mtk_drm_crtc: Add checks for devm_kcalloc
As the devm_kcalloc may return NULL, the return value needs to be checked
to avoid NULL poineter dereference.
In the Linux kernel, the following vulnerability has been resolved:
net: bcmgenet: Add a check for oversized packets
Occasionnaly we may get oversized packets from the hardware which
exceed the nomimal 2KiB buffer size we allocate SKBs with. Add an early
check which drops the packet to avoid invoking skb_over_panic() and move
on to processing the next packet.
In the Linux kernel, the following vulnerability has been resolved:
blk-crypto: make blk_crypto_evict_key() more robust
If blk_crypto_evict_key() sees that the key is still in-use (due to a
bug) or that ->keyslot_evict failed, it currently just returns while
leaving the key linked into the keyslot management structures.
However, blk_crypto_evict_key() is only called in contexts such as inode
eviction where failure is not an option. So actually the caller
proceeds with freeing the blk_crypto_key regardless of the return value
of blk_crypto_evict_key().
These two assumptions don't match, and the result is that there can be a
use-after-free in blk_crypto_reprogram_all_keys() after one of these
errors occurs. (Note, these errors *shouldn't* happen; we're just
talking about what happens if they do anyway.)
Fix this by making blk_crypto_evict_key() unlink the key from the
keyslot management structures even on failure.
Also improve some comments.
In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to avoid use-after-free for cached IPU bio
xfstest generic/019 reports a bug:
kernel BUG at mm/filemap.c:1619!
RIP: 0010:folio_end_writeback+0x8a/0x90
Call Trace:
end_page_writeback+0x1c/0x60
f2fs_write_end_io+0x199/0x420
bio_endio+0x104/0x180
submit_bio_noacct+0xa5/0x510
submit_bio+0x48/0x80
f2fs_submit_write_bio+0x35/0x300
f2fs_submit_merged_ipu_write+0x2a0/0x2b0
f2fs_write_single_data_page+0x838/0x8b0
f2fs_write_cache_pages+0x379/0xa30
f2fs_write_data_pages+0x30c/0x340
do_writepages+0xd8/0x1b0
__writeback_single_inode+0x44/0x370
writeback_sb_inodes+0x233/0x4d0
__writeback_inodes_wb+0x56/0xf0
wb_writeback+0x1dd/0x2d0
wb_workfn+0x367/0x4a0
process_one_work+0x21d/0x430
worker_thread+0x4e/0x3c0
kthread+0x103/0x130
ret_from_fork+0x2c/0x50
The root cause is: after cp_error is set, f2fs_submit_merged_ipu_write()
in f2fs_write_single_data_page() tries to flush IPU bio in cache, however
f2fs_submit_merged_ipu_write() missed to check validity of @bio parameter,
result in submitting random cached bio which belong to other IO context,
then it will cause use-after-free issue, fix it by adding additional
validity check.
In the Linux kernel, the following vulnerability has been resolved:
btrfs: insert tree mod log move in push_node_left
There is a fairly unlikely race condition in tree mod log rewind that
can result in a kernel panic which has the following trace:
[530.569] BTRFS critical (device sda3): unable to find logical 0 length 4096
[530.585] BTRFS critical (device sda3): unable to find logical 0 length 4096
[530.602] BUG: kernel NULL pointer dereference, address: 0000000000000002
[530.618] #PF: supervisor read access in kernel mode
[530.629] #PF: error_code(0x0000) - not-present page
[530.641] PGD 0 P4D 0
[530.647] Oops: 0000 [#1] SMP
[530.654] CPU: 30 PID: 398973 Comm: below Kdump: loaded Tainted: G S O K 5.12.0-0_fbk13_clang_7455_gb24de3bdb045 #1
[530.680] Hardware name: Quanta Mono Lake-M.2 SATA 1HY9U9Z001G/Mono Lake-M.2 SATA, BIOS F20_3A15 08/16/2017
[530.703] RIP: 0010:__btrfs_map_block+0xaa/0xd00
[530.755] RSP: 0018:ffffc9002c2f7600 EFLAGS: 00010246
[530.767] RAX: ffffffffffffffea RBX: ffff888292e41000 RCX: f2702d8b8be15100
[530.784] RDX: ffff88885fda6fb8 RSI: ffff88885fd973c8 RDI: ffff88885fd973c8
[530.800] RBP: ffff888292e410d0 R08: ffffffff82fd7fd0 R09: 00000000fffeffff
[530.816] R10: ffffffff82e57fd0 R11: ffffffff82e57d70 R12: 0000000000000000
[530.832] R13: 0000000000001000 R14: 0000000000001000 R15: ffffc9002c2f76f0
[530.848] FS: 00007f38d64af000(0000) GS:ffff88885fd80000(0000) knlGS:0000000000000000
[530.866] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[530.880] CR2: 0000000000000002 CR3: 00000002b6770004 CR4: 00000000003706e0
[530.896] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[530.912] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[530.928] Call Trace:
[530.934] ? btrfs_printk+0x13b/0x18c
[530.943] ? btrfs_bio_counter_inc_blocked+0x3d/0x130
[530.955] btrfs_map_bio+0x75/0x330
[530.963] ? kmem_cache_alloc+0x12a/0x2d0
[530.973] ? btrfs_submit_metadata_bio+0x63/0x100
[530.984] btrfs_submit_metadata_bio+0xa4/0x100
[530.995] submit_extent_page+0x30f/0x360
[531.004] read_extent_buffer_pages+0x49e/0x6d0
[531.015] ? submit_extent_page+0x360/0x360
[531.025] btree_read_extent_buffer_pages+0x5f/0x150
[531.037] read_tree_block+0x37/0x60
[531.046] read_block_for_search+0x18b/0x410
[531.056] btrfs_search_old_slot+0x198/0x2f0
[531.066] resolve_indirect_ref+0xfe/0x6f0
[531.076] ? ulist_alloc+0x31/0x60
[531.084] ? kmem_cache_alloc_trace+0x12e/0x2b0
[531.095] find_parent_nodes+0x720/0x1830
[531.105] ? ulist_alloc+0x10/0x60
[531.113] iterate_extent_inodes+0xea/0x370
[531.123] ? btrfs_previous_extent_item+0x8f/0x110
[531.134] ? btrfs_search_path_in_tree+0x240/0x240
[531.146] iterate_inodes_from_logical+0x98/0xd0
[531.157] ? btrfs_search_path_in_tree+0x240/0x240
[531.168] btrfs_ioctl_logical_to_ino+0xd9/0x180
[531.179] btrfs_ioctl+0xe2/0x2eb0
This occurs when logical inode resolution takes a tree mod log sequence
number, and then while backref walking hits a rewind on a busy node
which has the following sequence of tree mod log operations (numbers
filled in from a specific example, but they are somewhat arbitrary)
REMOVE_WHILE_FREEING slot 532
REMOVE_WHILE_FREEING slot 531
REMOVE_WHILE_FREEING slot 530
...
REMOVE_WHILE_FREEING slot 0
REMOVE slot 455
REMOVE slot 454
REMOVE slot 453
...
REMOVE slot 0
ADD slot 455
ADD slot 454
ADD slot 453
...
ADD slot 0
MOVE src slot 0 -> dst slot 456 nritems 533
REMOVE slot 455
REMOVE slot 454
REMOVE slot 453
...
REMOVE slot 0
When this sequence gets applied via btrfs_tree_mod_log_rewind, it
allocates a fresh rewind eb, and first inserts the correct key info for
the 533 elements, then overwrites the first 456 of them, then decrements
the count by 456 via the add ops, then rewinds the move by doing a
memmove from 456:988->0:532. We have never written anything past 532,
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Fix incomplete state save in rxe_requester
If a send packet is dropped by the IP layer in rxe_requester()
the call to rxe_xmit_packet() can fail with err == -EAGAIN.
To recover, the state of the wqe is restored to the state before
the packet was sent so it can be resent. However, the routines
that save and restore the state miss a significnt part of the
variable state in the wqe, the dma struct which is used to process
through the sge table. And, the state is not saved before the packet
is built which modifies the dma struct.
Under heavy stress testing with many QPs on a fast node sending
large messages to a slow node dropped packets are observed and
the resent packets are corrupted because the dma struct was not
restored. This patch fixes this behavior and allows the test cases
to succeed.
In the Linux kernel, the following vulnerability has been resolved:
media: dvb-core: Fix double free in dvb_register_device()
In function dvb_register_device() -> dvb_register_media_device() ->
dvb_create_media_entity(), dvb->entity is allocated and initialized. If
the initialization fails, it frees the dvb->entity, and return an error
code. The caller takes the error code and handles the error by calling
dvb_media_device_free(), which unregisters the entity and frees the
field again if it is not NULL. As dvb->entity may not NULLed in
dvb_create_media_entity() when the allocation of dvbdev->pad fails, a
double free may occur. This may also cause an Use After free in
media_device_unregister_entity().
Fix this by storing NULL to dvb->entity when it is freed.