In the Linux kernel, the following vulnerability has been resolved:
modpost: fix off by one in is_executable_section()
The > comparison should be >= to prevent an out of bounds array
access.
In the Linux kernel, the following vulnerability has been resolved:
irqchip/gicv3: Workaround for NVIDIA erratum T241-FABRIC-4
The T241 platform suffers from the T241-FABRIC-4 erratum which causes
unexpected behavior in the GIC when multiple transactions are received
simultaneously from different sources. This hardware issue impacts
NVIDIA server platforms that use more than two T241 chips
interconnected. Each chip has support for 320 {E}SPIs.
This issue occurs when multiple packets from different GICs are
incorrectly interleaved at the target chip. The erratum text below
specifies exactly what can cause multiple transfer packets susceptible
to interleaving and GIC state corruption. GIC state corruption can
lead to a range of problems, including kernel panics, and unexpected
behavior.
>From the erratum text:
"In some cases, inter-socket AXI4 Stream packets with multiple
transfers, may be interleaved by the fabric when presented to ARM
Generic Interrupt Controller. GIC expects all transfers of a packet
to be delivered without any interleaving.
The following GICv3 commands may result in multiple transfer packets
over inter-socket AXI4 Stream interface:
- Register reads from GICD_I* and GICD_N*
- Register writes to 64-bit GICD registers other than GICD_IROUTERn*
- ITS command MOVALL
Multiple commands in GICv4+ utilize multiple transfer packets,
including VMOVP, VMOVI, VMAPP, and 64-bit register accesses."
This issue impacts system configurations with more than 2 sockets,
that require multi-transfer packets to be sent over inter-socket
AXI4 Stream interface between GIC instances on different sockets.
GICv4 cannot be supported. GICv3 SW model can only be supported
with the workaround. Single and Dual socket configurations are not
impacted by this issue and support GICv3 and GICv4."
Writing to the chip alias region of the GICD_In{E} registers except
GICD_ICENABLERn has an equivalent effect as writing to the global
distributor. The SPI interrupt deactivate path is not impacted by
the erratum.
To fix this problem, implement a workaround that ensures read accesses
to the GICD_In{E} registers are directed to the chip that owns the
SPI, and disable GICv4.x features. To simplify code changes, the
gic_configure_irq() function uses the same alias region for both read
and write operations to GICD_ICFGR.
In the Linux kernel, the following vulnerability has been resolved:
wifi: mwifiex: avoid possible NULL skb pointer dereference
In 'mwifiex_handle_uap_rx_forward()', always check the value
returned by 'skb_copy()' to avoid potential NULL pointer
dereference in 'mwifiex_uap_queue_bridged_pkt()', and drop
original skb in case of copying failure.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: core: Fix device management cmd timeout flow
In the UFS error handling flow, the host will send a device management cmd
(NOP OUT) to the device for link recovery. If this cmd times out and
clearing the doorbell fails, ufshcd_wait_for_dev_cmd() will do nothing and
return. hba->dev_cmd.complete struct is not set to NULL.
When this happens, if cmd has been completed by device, then we will call
complete() in __ufshcd_transfer_req_compl(). Because the complete struct is
allocated on the stack, the following crash will occur:
ipanic_die+0x24/0x38 [mrdump]
die+0x344/0x748
arm64_notify_die+0x44/0x104
do_debug_exception+0x104/0x1e0
el1_dbg+0x38/0x54
el1_sync_handler+0x40/0x88
el1_sync+0x8c/0x140
queued_spin_lock_slowpath+0x2e4/0x3c0
__ufshcd_transfer_req_compl+0x3b0/0x1164
ufshcd_trc_handler+0x15c/0x308
ufshcd_host_reset_and_restore+0x54/0x260
ufshcd_reset_and_restore+0x28c/0x57c
ufshcd_err_handler+0xeb8/0x1b6c
process_one_work+0x288/0x964
worker_thread+0x4bc/0xc7c
kthread+0x15c/0x264
ret_from_fork+0x10/0x30
In the Linux kernel, the following vulnerability has been resolved:
drm/mediatek: Clean dangling pointer on bind error path
mtk_drm_bind() can fail, in which case drm_dev_put() is called,
destroying the drm_device object. However a pointer to it was still
being held in the private object, and that pointer would be passed along
to DRM in mtk_drm_sys_prepare() if a suspend were triggered at that
point, resulting in a panic. Clean the pointer when destroying the
object in the error path to prevent this from happening.
In the Linux kernel, the following vulnerability has been resolved:
staging: greybus: audio_helper: remove unused and wrong debugfs usage
In the greybus audio_helper code, the debugfs file for the dapm has the
potential to be removed and memory will be leaked. There is also the
very real potential for this code to remove ALL debugfs entries from the
system, and it seems like this is what will really happen if this code
ever runs. This all is very wrong as the greybus audio driver did not
create this debugfs file, the sound core did and controls the lifespan
of it.
So remove all of the debugfs logic from the audio_helper code as there's
no way it could be correct. If this really is needed, it can come back
with a fixup for the incorrect usage of the debugfs_lookup() call which
is what caused this to be noticed at all.
In the Linux kernel, the following vulnerability has been resolved:
net: dcb: choose correct policy to parse DCB_ATTR_BCN
The dcbnl_bcn_setcfg uses erroneous policy to parse tb[DCB_ATTR_BCN],
which is introduced in commit 859ee3c43812 ("DCB: Add support for DCB
BCN"). Please see the comment in below code
static int dcbnl_bcn_setcfg(...)
{
...
ret = nla_parse_nested_deprecated(..., dcbnl_pfc_up_nest, .. )
// !!! dcbnl_pfc_up_nest for attributes
// DCB_PFC_UP_ATTR_0 to DCB_PFC_UP_ATTR_ALL in enum dcbnl_pfc_up_attrs
...
for (i = DCB_BCN_ATTR_RP_0; i <= DCB_BCN_ATTR_RP_7; i++) {
// !!! DCB_BCN_ATTR_RP_0 to DCB_BCN_ATTR_RP_7 in enum dcbnl_bcn_attrs
...
value_byte = nla_get_u8(data[i]);
...
}
...
for (i = DCB_BCN_ATTR_BCNA_0; i <= DCB_BCN_ATTR_RI; i++) {
// !!! DCB_BCN_ATTR_BCNA_0 to DCB_BCN_ATTR_RI in enum dcbnl_bcn_attrs
...
value_int = nla_get_u32(data[i]);
...
}
...
}
That is, the nla_parse_nested_deprecated uses dcbnl_pfc_up_nest
attributes to parse nlattr defined in dcbnl_pfc_up_attrs. But the
following access code fetch each nlattr as dcbnl_bcn_attrs attributes.
By looking up the associated nla_policy for dcbnl_bcn_attrs. We can find
the beginning part of these two policies are "same".
static const struct nla_policy dcbnl_pfc_up_nest[...] = {
[DCB_PFC_UP_ATTR_0] = {.type = NLA_U8},
[DCB_PFC_UP_ATTR_1] = {.type = NLA_U8},
[DCB_PFC_UP_ATTR_2] = {.type = NLA_U8},
[DCB_PFC_UP_ATTR_3] = {.type = NLA_U8},
[DCB_PFC_UP_ATTR_4] = {.type = NLA_U8},
[DCB_PFC_UP_ATTR_5] = {.type = NLA_U8},
[DCB_PFC_UP_ATTR_6] = {.type = NLA_U8},
[DCB_PFC_UP_ATTR_7] = {.type = NLA_U8},
[DCB_PFC_UP_ATTR_ALL] = {.type = NLA_FLAG},
};
static const struct nla_policy dcbnl_bcn_nest[...] = {
[DCB_BCN_ATTR_RP_0] = {.type = NLA_U8},
[DCB_BCN_ATTR_RP_1] = {.type = NLA_U8},
[DCB_BCN_ATTR_RP_2] = {.type = NLA_U8},
[DCB_BCN_ATTR_RP_3] = {.type = NLA_U8},
[DCB_BCN_ATTR_RP_4] = {.type = NLA_U8},
[DCB_BCN_ATTR_RP_5] = {.type = NLA_U8},
[DCB_BCN_ATTR_RP_6] = {.type = NLA_U8},
[DCB_BCN_ATTR_RP_7] = {.type = NLA_U8},
[DCB_BCN_ATTR_RP_ALL] = {.type = NLA_FLAG},
// from here is somewhat different
[DCB_BCN_ATTR_BCNA_0] = {.type = NLA_U32},
...
[DCB_BCN_ATTR_ALL] = {.type = NLA_FLAG},
};
Therefore, the current code is buggy and this
nla_parse_nested_deprecated could overflow the dcbnl_pfc_up_nest and use
the adjacent nla_policy to parse attributes from DCB_BCN_ATTR_BCNA_0.
Hence use the correct policy dcbnl_bcn_nest to parse the nested
tb[DCB_ATTR_BCN] TLV.
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix memory leak in mes self test
The fences associated with mes queue have to be freed
up during amdgpu_ring_fini.
In the Linux kernel, the following vulnerability has been resolved:
crypto: seqiv - Handle EBUSY correctly
As it is seqiv only handles the special return value of EINPROGERSS,
which means that in all other cases it will free data related to the
request.
However, as the caller of seqiv may specify MAY_BACKLOG, we also need
to expect EBUSY and treat it in the same way. Otherwise backlogged
requests will trigger a use-after-free.
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: SDMA update use unlocked iterator
SDMA update page table may be called from unlocked context, this
generate below warning. Use unlocked iterator to handle this case.
WARNING: CPU: 0 PID: 1475 at
drivers/dma-buf/dma-resv.c:483 dma_resv_iter_next
Call Trace:
dma_resv_iter_first+0x43/0xa0
amdgpu_vm_sdma_update+0x69/0x2d0 [amdgpu]
amdgpu_vm_ptes_update+0x29c/0x870 [amdgpu]
amdgpu_vm_update_range+0x2f6/0x6c0 [amdgpu]
svm_range_unmap_from_gpus+0x115/0x300 [amdgpu]
svm_range_cpu_invalidate_pagetables+0x510/0x5e0 [amdgpu]
__mmu_notifier_invalidate_range_start+0x1d3/0x230
unmap_vmas+0x140/0x150
unmap_region+0xa8/0x110