In the Linux kernel, the following vulnerability has been resolved:
blk-throttle: Set BIO_THROTTLED when bio has been throttled
1.In current process, all bio will set the BIO_THROTTLED flag
after __blk_throtl_bio().
2.If bio needs to be throttled, it will start the timer and
stop submit bio directly. Bio will submit in
blk_throtl_dispatch_work_fn() when the timer expires.But in
the current process, if bio is throttled. The BIO_THROTTLED
will be set to bio after timer start. If the bio has been
completed, it may cause use-after-free blow.
BUG: KASAN: use-after-free in blk_throtl_bio+0x12f0/0x2c70
Read of size 2 at addr ffff88801b8902d4 by task fio/26380
dump_stack+0x9b/0xce
print_address_description.constprop.6+0x3e/0x60
kasan_report.cold.9+0x22/0x3a
blk_throtl_bio+0x12f0/0x2c70
submit_bio_checks+0x701/0x1550
submit_bio_noacct+0x83/0xc80
submit_bio+0xa7/0x330
mpage_readahead+0x380/0x500
read_pages+0x1c1/0xbf0
page_cache_ra_unbounded+0x471/0x6f0
do_page_cache_ra+0xda/0x110
ondemand_readahead+0x442/0xae0
page_cache_async_ra+0x210/0x300
generic_file_buffered_read+0x4d9/0x2130
generic_file_read_iter+0x315/0x490
blkdev_read_iter+0x113/0x1b0
aio_read+0x2ad/0x450
io_submit_one+0xc8e/0x1d60
__se_sys_io_submit+0x125/0x350
do_syscall_64+0x2d/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Allocated by task 26380:
kasan_save_stack+0x19/0x40
__kasan_kmalloc.constprop.2+0xc1/0xd0
kmem_cache_alloc+0x146/0x440
mempool_alloc+0x125/0x2f0
bio_alloc_bioset+0x353/0x590
mpage_alloc+0x3b/0x240
do_mpage_readpage+0xddf/0x1ef0
mpage_readahead+0x264/0x500
read_pages+0x1c1/0xbf0
page_cache_ra_unbounded+0x471/0x6f0
do_page_cache_ra+0xda/0x110
ondemand_readahead+0x442/0xae0
page_cache_async_ra+0x210/0x300
generic_file_buffered_read+0x4d9/0x2130
generic_file_read_iter+0x315/0x490
blkdev_read_iter+0x113/0x1b0
aio_read+0x2ad/0x450
io_submit_one+0xc8e/0x1d60
__se_sys_io_submit+0x125/0x350
do_syscall_64+0x2d/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Freed by task 0:
kasan_save_stack+0x19/0x40
kasan_set_track+0x1c/0x30
kasan_set_free_info+0x1b/0x30
__kasan_slab_free+0x111/0x160
kmem_cache_free+0x94/0x460
mempool_free+0xd6/0x320
bio_free+0xe0/0x130
bio_put+0xab/0xe0
bio_endio+0x3a6/0x5d0
blk_update_request+0x590/0x1370
scsi_end_request+0x7d/0x400
scsi_io_completion+0x1aa/0xe50
scsi_softirq_done+0x11b/0x240
blk_mq_complete_request+0xd4/0x120
scsi_mq_done+0xf0/0x200
virtscsi_vq_done+0xbc/0x150
vring_interrupt+0x179/0x390
__handle_irq_event_percpu+0xf7/0x490
handle_irq_event_percpu+0x7b/0x160
handle_irq_event+0xcc/0x170
handle_edge_irq+0x215/0xb20
common_interrupt+0x60/0x120
asm_common_interrupt+0x1e/0x40
Fix this by move BIO_THROTTLED set into the queue_lock.
In the Linux kernel, the following vulnerability has been resolved:
ARM: hisi: Add missing of_node_put after of_find_compatible_node
of_find_compatible_node will increment the refcount of the returned
device_node. Calling of_node_put() to avoid the refcount leak
In the Linux kernel, the following vulnerability has been resolved:
pinctrl: renesas: rzn1: Fix possible null-ptr-deref in sh_pfc_map_resources()
It will cause null-ptr-deref when using 'res', if platform_get_resource()
returns NULL, so move using 'res' after devm_ioremap_resource() that
will check it to avoid null-ptr-deref.
And use devm_platform_get_and_ioremap_resource() to simplify code.
In the Linux kernel, the following vulnerability has been resolved:
soc: ti: ti_sci_pm_domains: Check for null return of devm_kcalloc
The allocation funciton devm_kcalloc may fail and return a null pointer,
which would cause a null-pointer dereference later.
It might be better to check it and directly return -ENOMEM just like the
usage of devm_kcalloc in previous code.
In the Linux kernel, the following vulnerability has been resolved:
powerpc/rtas: Keep MSR[RI] set when calling RTAS
RTAS runs in real mode (MSR[DR] and MSR[IR] unset) and in 32-bit big
endian mode (MSR[SF,LE] unset).
The change in MSR is done in enter_rtas() in a relatively complex way,
since the MSR value could be hardcoded.
Furthermore, a panic has been reported when hitting the watchdog interrupt
while running in RTAS, this leads to the following stack trace:
watchdog: CPU 24 Hard LOCKUP
watchdog: CPU 24 TB:997512652051031, last heartbeat TB:997504470175378 (15980ms ago)
...
Supported: No, Unreleased kernel
CPU: 24 PID: 87504 Comm: drmgr Kdump: loaded Tainted: G E X 5.14.21-150400.71.1.bz196362_2-default #1 SLE15-SP4 (unreleased) 0d821077ef4faa8dfaf370efb5fdca1fa35f4e2c
NIP: 000000001fb41050 LR: 000000001fb4104c CTR: 0000000000000000
REGS: c00000000fc33d60 TRAP: 0100 Tainted: G E X (5.14.21-150400.71.1.bz196362_2-default)
MSR: 8000000002981000 <SF,VEC,VSX,ME> CR: 48800002 XER: 20040020
CFAR: 000000000000011c IRQMASK: 1
GPR00: 0000000000000003 ffffffffffffffff 0000000000000001 00000000000050dc
GPR04: 000000001ffb6100 0000000000000020 0000000000000001 000000001fb09010
GPR08: 0000000020000000 0000000000000000 0000000000000000 0000000000000000
GPR12: 80040000072a40a8 c00000000ff8b680 0000000000000007 0000000000000034
GPR16: 000000001fbf6e94 000000001fbf6d84 000000001fbd1db0 000000001fb3f008
GPR20: 000000001fb41018 ffffffffffffffff 000000000000017f fffffffffffff68f
GPR24: 000000001fb18fe8 000000001fb3e000 000000001fb1adc0 000000001fb1cf40
GPR28: 000000001fb26000 000000001fb460f0 000000001fb17f18 000000001fb17000
NIP [000000001fb41050] 0x1fb41050
LR [000000001fb4104c] 0x1fb4104c
Call Trace:
Instruction dump:
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
Oops: Unrecoverable System Reset, sig: 6 [#1]
LE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS=2048 NUMA pSeries
...
Supported: No, Unreleased kernel
CPU: 24 PID: 87504 Comm: drmgr Kdump: loaded Tainted: G E X 5.14.21-150400.71.1.bz196362_2-default #1 SLE15-SP4 (unreleased) 0d821077ef4faa8dfaf370efb5fdca1fa35f4e2c
NIP: 000000001fb41050 LR: 000000001fb4104c CTR: 0000000000000000
REGS: c00000000fc33d60 TRAP: 0100 Tainted: G E X (5.14.21-150400.71.1.bz196362_2-default)
MSR: 8000000002981000 <SF,VEC,VSX,ME> CR: 48800002 XER: 20040020
CFAR: 000000000000011c IRQMASK: 1
GPR00: 0000000000000003 ffffffffffffffff 0000000000000001 00000000000050dc
GPR04: 000000001ffb6100 0000000000000020 0000000000000001 000000001fb09010
GPR08: 0000000020000000 0000000000000000 0000000000000000 0000000000000000
GPR12: 80040000072a40a8 c00000000ff8b680 0000000000000007 0000000000000034
GPR16: 000000001fbf6e94 000000001fbf6d84 000000001fbd1db0 000000001fb3f008
GPR20: 000000001fb41018 ffffffffffffffff 000000000000017f fffffffffffff68f
GPR24: 000000001fb18fe8 000000001fb3e000 000000001fb1adc0 000000001fb1cf40
GPR28: 000000001fb26000 000000001fb460f0 000000001fb17f18 000000001fb17000
NIP [000000001fb41050] 0x1fb41050
LR [000000001fb4104c] 0x1fb4104c
Call Trace:
Instruction dump:
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
---[ end trace 3ddec07f638c34a2 ]---
This happens because MSR[RI] is unset when entering RTAS but there is no
valid reason to not set it here.
RTAS is expected to be called with MSR[RI] as specified in PAPR+ section
"7.2.1 Machine State":
R1–7.2.1–9. If called with MSR[RI] equal to 1, then RTAS must protect
its own critical regions from recursion by setting the MSR[RI] bit to
0 when in the critical regions.
Fixing this by reviewing the way MSR is compute before calling RTAS. Now a
hardcoded value meaning real
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
RDMA/hfi1: Prevent panic when SDMA is disabled
If the hfi1 module is loaded with HFI1_CAP_SDMA off, a call to
hfi1_write_iter() will dereference a NULL pointer and panic. A typical
stack frame is:
sdma_select_user_engine [hfi1]
hfi1_user_sdma_process_request [hfi1]
hfi1_write_iter [hfi1]
do_iter_readv_writev
do_iter_write
vfs_writev
do_writev
do_syscall_64
The fix is to test for SDMA in hfi1_write_iter() and fail the I/O with
EINVAL.
In the Linux kernel, the following vulnerability has been resolved:
powerpc/iommu: Add missing of_node_put in iommu_init_early_dart
The device_node pointer is returned by of_find_compatible_node
with refcount incremented. We should use of_node_put() to avoid
the refcount leak.
In the Linux kernel, the following vulnerability has been resolved:
powerpc/xics: fix refcount leak in icp_opal_init()
The of_find_compatible_node() function returns a node pointer with
refcount incremented, use of_node_put() on it when done.
In the Linux kernel, the following vulnerability has been resolved:
PCI: Avoid pci_dev_lock() AB/BA deadlock with sriov_numvfs_store()
The sysfs sriov_numvfs_store() path acquires the device lock before the
config space access lock:
sriov_numvfs_store
device_lock # A (1) acquire device lock
sriov_configure
vfio_pci_sriov_configure # (for example)
vfio_pci_core_sriov_configure
pci_disable_sriov
sriov_disable
pci_cfg_access_lock
pci_wait_cfg # B (4) wait for dev->block_cfg_access == 0
Previously, pci_dev_lock() acquired the config space access lock before the
device lock:
pci_dev_lock
pci_cfg_access_lock
dev->block_cfg_access = 1 # B (2) set dev->block_cfg_access = 1
device_lock # A (3) wait for device lock
Any path that uses pci_dev_lock(), e.g., pci_reset_function(), may
deadlock with sriov_numvfs_store() if the operations occur in the sequence
(1) (2) (3) (4).
Avoid the deadlock by reversing the order in pci_dev_lock() so it acquires
the device lock before the config space access lock, the same as the
sriov_numvfs_store() path.
[bhelgaas: combined and adapted commit log from Jay Zhou's independent
subsequent posting:
https://lore.kernel.org/r/20220404062539.1710-1-jianjay.zhou@huawei.com]