In the Linux kernel, the following vulnerability has been resolved:
ocfs2: dlmfs: fix error handling of user_dlm_destroy_lock
When user_dlm_destroy_lock failed, it didn't clean up the flags it set
before exit. For USER_LOCK_IN_TEARDOWN, if this function fails because of
lock is still in used, next time when unlink invokes this function, it
will return succeed, and then unlink will remove inode and dentry if lock
is not in used(file closed), but the dlm lock is still linked in dlm lock
resource, then when bast come in, it will trigger a panic due to
user-after-free. See the following panic call trace. To fix this,
USER_LOCK_IN_TEARDOWN should be reverted if fail. And also error should
be returned if USER_LOCK_IN_TEARDOWN is set to let user know that unlink
fail.
For the case of ocfs2_dlm_unlock failure, besides USER_LOCK_IN_TEARDOWN,
USER_LOCK_BUSY is also required to be cleared. Even though spin lock is
released in between, but USER_LOCK_IN_TEARDOWN is still set, for
USER_LOCK_BUSY, if before every place that waits on this flag,
USER_LOCK_IN_TEARDOWN is checked to bail out, that will make sure no flow
waits on the busy flag set by user_dlm_destroy_lock(), then we can
simplely revert USER_LOCK_BUSY when ocfs2_dlm_unlock fails. Fix
user_dlm_cluster_lock() which is the only function not following this.
[ 941.336392] (python,26174,16):dlmfs_unlink:562 ERROR: unlink
004fb0000060000b5a90b8c847b72e1, error -16 from destroy
[ 989.757536] ------------[ cut here ]------------
[ 989.757709] kernel BUG at fs/ocfs2/dlmfs/userdlm.c:173!
[ 989.757876] invalid opcode: 0000 [#1] SMP
[ 989.758027] Modules linked in: ksplice_2zhuk2jr_ib_ipoib_new(O)
ksplice_2zhuk2jr(O) mptctl mptbase xen_netback xen_blkback xen_gntalloc
xen_gntdev xen_evtchn cdc_ether usbnet mii ocfs2 jbd2 rpcsec_gss_krb5
auth_rpcgss nfsv4 nfsv3 nfs_acl nfs fscache lockd grace ocfs2_dlmfs
ocfs2_stack_o2cb ocfs2_dlm ocfs2_nodemanager ocfs2_stackglue configfs bnx2fc
fcoe libfcoe libfc scsi_transport_fc sunrpc ipmi_devintf bridge stp llc
rds_rdma rds bonding ib_sdp ib_ipoib rdma_ucm ib_ucm ib_uverbs ib_umad
rdma_cm ib_cm iw_cm falcon_lsm_serviceable(PE) falcon_nf_netcontain(PE)
mlx4_vnic falcon_kal(E) falcon_lsm_pinned_13402(E) mlx4_ib ib_sa ib_mad
ib_core ib_addr xenfs xen_privcmd dm_multipath iTCO_wdt iTCO_vendor_support
pcspkr sb_edac edac_core i2c_i801 lpc_ich mfd_core ipmi_ssif i2c_core ipmi_si
ipmi_msghandler
[ 989.760686] ioatdma sg ext3 jbd mbcache sd_mod ahci libahci ixgbe dca ptp
pps_core vxlan udp_tunnel ip6_udp_tunnel megaraid_sas mlx4_core crc32c_intel
be2iscsi bnx2i cnic uio cxgb4i cxgb4 cxgb3i libcxgbi ipv6 cxgb3 mdio
libiscsi_tcp qla4xxx iscsi_boot_sysfs libiscsi scsi_transport_iscsi wmi
dm_mirror dm_region_hash dm_log dm_mod [last unloaded:
ksplice_2zhuk2jr_ib_ipoib_old]
[ 989.761987] CPU: 10 PID: 19102 Comm: dlm_thread Tainted: P OE
4.1.12-124.57.1.el6uek.x86_64 #2
[ 989.762290] Hardware name: Oracle Corporation ORACLE SERVER
X5-2/ASM,MOTHERBOARD,1U, BIOS 30350100 06/17/2021
[ 989.762599] task: ffff880178af6200 ti: ffff88017f7c8000 task.ti:
ffff88017f7c8000
[ 989.762848] RIP: e030:[<ffffffffc07d4316>] [<ffffffffc07d4316>]
__user_dlm_queue_lockres.part.4+0x76/0x80 [ocfs2_dlmfs]
[ 989.763185] RSP: e02b:ffff88017f7cbcb8 EFLAGS: 00010246
[ 989.763353] RAX: 0000000000000000 RBX: ffff880174d48008 RCX:
0000000000000003
[ 989.763565] RDX: 0000000000120012 RSI: 0000000000000003 RDI:
ffff880174d48170
[ 989.763778] RBP: ffff88017f7cbcc8 R08: ffff88021f4293b0 R09:
0000000000000000
[ 989.763991] R10: ffff880179c8c000 R11: 0000000000000003 R12:
ffff880174d48008
[ 989.764204] R13: 0000000000000003 R14: ffff880179c8c000 R15:
ffff88021db7a000
[ 989.764422] FS: 0000000000000000(0000) GS:ffff880247480000(0000)
knlGS:ffff880247480000
[ 989.764685] CS: e033 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 989.764865] CR2: ffff8000007f6800 CR3: 0000000001ae0000 CR4:
0000000000042660
[ 989.765081] Stack:
[ 989.765167] 00000000000
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
tracing: Fix sleeping function called from invalid context on RT kernel
When setting bootparams="trace_event=initcall:initcall_start tp_printk=1" in the
cmdline, the output_printk() was called, and the spin_lock_irqsave() was called in the
atomic and irq disable interrupt context suitation. On the PREEMPT_RT kernel,
these locks are replaced with sleepable rt-spinlock, so the stack calltrace will
be triggered.
Fix it by raw_spin_lock_irqsave when PREEMPT_RT and "trace_event=initcall:initcall_start
tp_printk=1" enabled.
BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:46
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 1, name: swapper/0
preempt_count: 2, expected: 0
RCU nest depth: 0, expected: 0
Preemption disabled at:
[<ffffffff8992303e>] try_to_wake_up+0x7e/0xba0
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.17.1-rt17+ #19 34c5812404187a875f32bee7977f7367f9679ea7
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x60/0x8c
dump_stack+0x10/0x12
__might_resched.cold+0x11d/0x155
rt_spin_lock+0x40/0x70
trace_event_buffer_commit+0x2fa/0x4c0
? map_vsyscall+0x93/0x93
trace_event_raw_event_initcall_start+0xbe/0x110
? perf_trace_initcall_finish+0x210/0x210
? probe_sched_wakeup+0x34/0x40
? ttwu_do_wakeup+0xda/0x310
? trace_hardirqs_on+0x35/0x170
? map_vsyscall+0x93/0x93
do_one_initcall+0x217/0x3c0
? trace_event_raw_event_initcall_level+0x170/0x170
? push_cpu_stop+0x400/0x400
? cblist_init_generic+0x241/0x290
kernel_init_freeable+0x1ac/0x347
? _raw_spin_unlock_irq+0x65/0x80
? rest_init+0xf0/0xf0
kernel_init+0x1e/0x150
ret_from_fork+0x22/0x30
</TASK>
In the Linux kernel, the following vulnerability has been resolved:
iommu/arm-smmu: fix possible null-ptr-deref in arm_smmu_device_probe()
It will cause null-ptr-deref when using 'res', if platform_get_resource()
returns NULL, so move using 'res' after devm_ioremap_resource() that
will check it to avoid null-ptr-deref.
And use devm_platform_get_and_ioremap_resource() to simplify code.
In the Linux kernel, the following vulnerability has been resolved:
mips: cpc: Fix refcount leak in mips_cpc_default_phys_base
Add the missing of_node_put() to release the refcount incremented
by of_find_compatible_node().
In the Linux kernel, the following vulnerability has been resolved:
tcp: add accessors to read/set tp->snd_cwnd
We had various bugs over the years with code
breaking the assumption that tp->snd_cwnd is greater
than zero.
Lately, syzbot reported the WARN_ON_ONCE(!tp->prior_cwnd) added
in commit 8b8a321ff72c ("tcp: fix zero cwnd in tcp_cwnd_reduction")
can trigger, and without a repro we would have to spend
considerable time finding the bug.
Instead of complaining too late, we want to catch where
and when tp->snd_cwnd is set to an illegal value.
In the Linux kernel, the following vulnerability has been resolved:
rtl818x: Prevent using not initialized queues
Using not existing queues can panic the kernel with rtl8180/rtl8185 cards.
Ignore the skb priority for those cards, they only have one tx queue. Pierre
Asselin (pa@panix.com) reported the kernel crash in the Gentoo forum:
https://forums.gentoo.org/viewtopic-t-1147832-postdays-0-postorder-asc-start-25.html
He also confirmed that this patch fixes the issue. In summary this happened:
After updating wpa_supplicant from 2.9 to 2.10 the kernel crashed with a
"divide error: 0000" when connecting to an AP. Control port tx now tries to
use IEEE80211_AC_VO for the priority, which wpa_supplicants starts to use in
2.10.
Since only the rtl8187se part of the driver supports QoS, the priority
of the skb is set to IEEE80211_AC_BE (2) by mac80211 for rtl8180/rtl8185
cards.
rtl8180 is then unconditionally reading out the priority and finally crashes on
drivers/net/wireless/realtek/rtl818x/rtl8180/dev.c line 544 without this
patch:
idx = (ring->idx + skb_queue_len(&ring->queue)) % ring->entries
"ring->entries" is zero for rtl8180/rtl8185 cards, tx_ring[2] never got
initialized.
In the Linux kernel, the following vulnerability has been resolved:
bcache: avoid journal no-space deadlock by reserving 1 journal bucket
The journal no-space deadlock was reported time to time. Such deadlock
can happen in the following situation.
When all journal buckets are fully filled by active jset with heavy
write I/O load, the cache set registration (after a reboot) will load
all active jsets and inserting them into the btree again (which is
called journal replay). If a journaled bkey is inserted into a btree
node and results btree node split, new journal request might be
triggered. For example, the btree grows one more level after the node
split, then the root node record in cache device super block will be
upgrade by bch_journal_meta() from bch_btree_set_root(). But there is no
space in journal buckets, the journal replay has to wait for new journal
bucket to be reclaimed after at least one journal bucket replayed. This
is one example that how the journal no-space deadlock happens.
The solution to avoid the deadlock is to reserve 1 journal bucket in
run time, and only permit the reserved journal bucket to be used during
cache set registration procedure for things like journal replay. Then
the journal space will never be fully filled, there is no chance for
journal no-space deadlock to happen anymore.
This patch adds a new member "bool do_reserve" in struct journal, it is
inititalized to 0 (false) when struct journal is allocated, and set to
1 (true) by bch_journal_space_reserve() when all initialization done in
run_cache_set(). In the run time when journal_reclaim() tries to
allocate a new journal bucket, free_journal_buckets() is called to check
whether there are enough free journal buckets to use. If there is only
1 free journal bucket and journal->do_reserve is 1 (true), the last
bucket is reserved and free_journal_buckets() will return 0 to indicate
no free journal bucket. Then journal_reclaim() will give up, and try
next time to see whetheer there is free journal bucket to allocate. By
this method, there is always 1 jouranl bucket reserved in run time.
During the cache set registration, journal->do_reserve is 0 (false), so
the reserved journal bucket can be used to avoid the no-space deadlock.
In the Linux kernel, the following vulnerability has been resolved:
drivers: usb: host: Fix deadlock in oxu_bus_suspend()
There is a deadlock in oxu_bus_suspend(), which is shown below:
(Thread 1) | (Thread 2)
| timer_action()
oxu_bus_suspend() | mod_timer()
spin_lock_irq() //(1) | (wait a time)
... | oxu_watchdog()
del_timer_sync() | spin_lock_irq() //(2)
(wait timer to stop) | ...
We hold oxu->lock in position (1) of thread 1, and use
del_timer_sync() to wait timer to stop, but timer handler
also need oxu->lock in position (2) of thread 2. As a result,
oxu_bus_suspend() will block forever.
This patch extracts del_timer_sync() from the protection of
spin_lock_irq(), which could let timer handler to obtain
the needed lock.