In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_reject: don't leak dst refcount for loopback packets
recent patches to add a WARN() when replacing skb dst entry found an
old bug:
WARNING: include/linux/skbuff.h:1165 skb_dst_check_unset include/linux/skbuff.h:1164 [inline]
WARNING: include/linux/skbuff.h:1165 skb_dst_set include/linux/skbuff.h:1210 [inline]
WARNING: include/linux/skbuff.h:1165 nf_reject_fill_skb_dst+0x2a4/0x330 net/ipv4/netfilter/nf_reject_ipv4.c:234
[..]
Call Trace:
nf_send_unreach+0x17b/0x6e0 net/ipv4/netfilter/nf_reject_ipv4.c:325
nft_reject_inet_eval+0x4bc/0x690 net/netfilter/nft_reject_inet.c:27
expr_call_ops_eval net/netfilter/nf_tables_core.c:237 [inline]
..
This is because blamed commit forgot about loopback packets.
Such packets already have a dst_entry attached, even at PRE_ROUTING stage.
Instead of checking hook just check if the skb already has a route
attached to it.
In the Linux kernel, the following vulnerability has been resolved:
gve: prevent ethtool ops after shutdown
A crash can occur if an ethtool operation is invoked
after shutdown() is called.
shutdown() is invoked during system shutdown to stop DMA operations
without performing expensive deallocations. It is discouraged to
unregister the netdev in this path, so the device may still be visible
to userspace and kernel helpers.
In gve, shutdown() tears down most internal data structures. If an
ethtool operation is dispatched after shutdown(), it will dereference
freed or NULL pointers, leading to a kernel panic. While graceful
shutdown normally quiesces userspace before invoking the reboot
syscall, forced shutdowns (as observed on GCP VMs) can still trigger
this path.
Fix by calling netif_device_detach() in shutdown().
This marks the device as detached so the ethtool ioctl handler
will skip dispatching operations to the driver.
In the Linux kernel, the following vulnerability has been resolved:
net: usb: asix_devices: Fix PHY address mask in MDIO bus initialization
Syzbot reported shift-out-of-bounds exception on MDIO bus initialization.
The PHY address should be masked to 5 bits (0-31). Without this
mask, invalid PHY addresses could be used, potentially causing issues
with MDIO bus operations.
Fix this by masking the PHY address with 0x1f (31 decimal) to ensure
it stays within the valid range.
In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Validate UAC3 power domain descriptors, too
UAC3 power domain descriptors need to be verified with its variable
bLength for avoiding the unexpected OOB accesses by malicious
firmware, too.
In the Linux kernel, the following vulnerability has been resolved:
LoongArch: BPF: Fix jump offset calculation in tailcall
The extra pass of bpf_int_jit_compile() skips JIT context initialization
which essentially skips offset calculation leaving out_offset = -1, so
the jmp_offset in emit_bpf_tail_call is calculated by
"#define jmp_offset (out_offset - (cur_offset))"
is a negative number, which is wrong. The final generated assembly are
as follow.
54: bgeu $a2, $t1, -8 # 0x0000004c
58: addi.d $a6, $s5, -1
5c: bltz $a6, -16 # 0x0000004c
60: alsl.d $t2, $a2, $a1, 0x3
64: ld.d $t2, $t2, 264
68: beq $t2, $zero, -28 # 0x0000004c
Before apply this patch, the follow test case will reveal soft lock issues.
cd tools/testing/selftests/bpf/
./test_progs --allow=tailcalls/tailcall_bpf2bpf_1
dmesg:
watchdog: BUG: soft lockup - CPU#2 stuck for 26s! [test_progs:25056]
In the Linux kernel, the following vulnerability has been resolved:
nfsd: handle get_client_locked() failure in nfsd4_setclientid_confirm()
Lei Lu recently reported that nfsd4_setclientid_confirm() did not check
the return value from get_client_locked(). a SETCLIENTID_CONFIRM could
race with a confirmed client expiring and fail to get a reference. That
could later lead to a UAF.
Fix this by getting a reference early in the case where there is an
extant confirmed client. If that fails then treat it as if there were no
confirmed client found at all.
In the case where the unconfirmed client is expiring, just fail and
return the result from get_client_locked().
In the Linux kernel, the following vulnerability has been resolved:
net: usb: asix_devices: add phy_mask for ax88772 mdio bus
Without setting phy_mask for ax88772 mdio bus, current driver may create
at most 32 mdio phy devices with phy address range from 0x00 ~ 0x1f.
DLink DUB-E100 H/W Ver B1 is such a device. However, only one main phy
device will bind to net phy driver. This is creating issue during system
suspend/resume since phy_polling_mode() in phy_state_machine() will
directly deference member of phydev->drv for non-main phy devices. Then
NULL pointer dereference issue will occur. Due to only external phy or
internal phy is necessary, add phy_mask for ax88772 mdio bus to workarnoud
the issue.
In the Linux kernel, the following vulnerability has been resolved:
netlink: avoid infinite retry looping in netlink_unicast()
netlink_attachskb() checks for the socket's read memory allocation
constraints. Firstly, it has:
rmem < READ_ONCE(sk->sk_rcvbuf)
to check if the just increased rmem value fits into the socket's receive
buffer. If not, it proceeds and tries to wait for the memory under:
rmem + skb->truesize > READ_ONCE(sk->sk_rcvbuf)
The checks don't cover the case when skb->truesize + sk->sk_rmem_alloc is
equal to sk->sk_rcvbuf. Thus the function neither successfully accepts
these conditions, nor manages to reschedule the task - and is called in
retry loop for indefinite time which is caught as:
rcu: INFO: rcu_sched self-detected stall on CPU
rcu: 0-....: (25999 ticks this GP) idle=ef2/1/0x4000000000000000 softirq=262269/262269 fqs=6212
(t=26000 jiffies g=230833 q=259957)
NMI backtrace for cpu 0
CPU: 0 PID: 22 Comm: kauditd Not tainted 5.10.240 #68
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.17.0-4.fc42 04/01/2014
Call Trace:
<IRQ>
dump_stack lib/dump_stack.c:120
nmi_cpu_backtrace.cold lib/nmi_backtrace.c:105
nmi_trigger_cpumask_backtrace lib/nmi_backtrace.c:62
rcu_dump_cpu_stacks kernel/rcu/tree_stall.h:335
rcu_sched_clock_irq.cold kernel/rcu/tree.c:2590
update_process_times kernel/time/timer.c:1953
tick_sched_handle kernel/time/tick-sched.c:227
tick_sched_timer kernel/time/tick-sched.c:1399
__hrtimer_run_queues kernel/time/hrtimer.c:1652
hrtimer_interrupt kernel/time/hrtimer.c:1717
__sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1113
asm_call_irq_on_stack arch/x86/entry/entry_64.S:808
</IRQ>
netlink_attachskb net/netlink/af_netlink.c:1234
netlink_unicast net/netlink/af_netlink.c:1349
kauditd_send_queue kernel/audit.c:776
kauditd_thread kernel/audit.c:897
kthread kernel/kthread.c:328
ret_from_fork arch/x86/entry/entry_64.S:304
Restore the original behavior of the check which commit in Fixes
accidentally missed when restructuring the code.
Found by Linux Verification Center (linuxtesting.org).
In the Linux kernel, the following vulnerability has been resolved:
smb3: fix for slab out of bounds on mount to ksmbd
With KASAN enabled, it is possible to get a slab out of bounds
during mount to ksmbd due to missing check in parse_server_interfaces()
(see below):
BUG: KASAN: slab-out-of-bounds in
parse_server_interfaces+0x14ee/0x1880 [cifs]
Read of size 4 at addr ffff8881433dba98 by task mount/9827
CPU: 5 UID: 0 PID: 9827 Comm: mount Tainted: G
OE 6.16.0-rc2-kasan #2 PREEMPT(voluntary)
Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
Hardware name: Dell Inc. Precision Tower 3620/0MWYPT,
BIOS 2.13.1 06/14/2019
Call Trace:
<TASK>
dump_stack_lvl+0x9f/0xf0
print_report+0xd1/0x670
__virt_addr_valid+0x22c/0x430
? parse_server_interfaces+0x14ee/0x1880 [cifs]
? kasan_complete_mode_report_info+0x2a/0x1f0
? parse_server_interfaces+0x14ee/0x1880 [cifs]
kasan_report+0xd6/0x110
parse_server_interfaces+0x14ee/0x1880 [cifs]
__asan_report_load_n_noabort+0x13/0x20
parse_server_interfaces+0x14ee/0x1880 [cifs]
? __pfx_parse_server_interfaces+0x10/0x10 [cifs]
? trace_hardirqs_on+0x51/0x60
SMB3_request_interfaces+0x1ad/0x3f0 [cifs]
? __pfx_SMB3_request_interfaces+0x10/0x10 [cifs]
? SMB2_tcon+0x23c/0x15d0 [cifs]
smb3_qfs_tcon+0x173/0x2b0 [cifs]
? __pfx_smb3_qfs_tcon+0x10/0x10 [cifs]
? cifs_get_tcon+0x105d/0x2120 [cifs]
? do_raw_spin_unlock+0x5d/0x200
? cifs_get_tcon+0x105d/0x2120 [cifs]
? __pfx_smb3_qfs_tcon+0x10/0x10 [cifs]
cifs_mount_get_tcon+0x369/0xb90 [cifs]
? dfs_cache_find+0xe7/0x150 [cifs]
dfs_mount_share+0x985/0x2970 [cifs]
? check_path.constprop.0+0x28/0x50
? save_trace+0x54/0x370
? __pfx_dfs_mount_share+0x10/0x10 [cifs]
? __lock_acquire+0xb82/0x2ba0
? __kasan_check_write+0x18/0x20
cifs_mount+0xbc/0x9e0 [cifs]
? __pfx_cifs_mount+0x10/0x10 [cifs]
? do_raw_spin_unlock+0x5d/0x200
? cifs_setup_cifs_sb+0x29d/0x810 [cifs]
cifs_smb3_do_mount+0x263/0x1990 [cifs]
In the Linux kernel, the following vulnerability has been resolved:
sctp: linearize cloned gso packets in sctp_rcv
A cloned head skb still shares these frag skbs in fraglist with the
original head skb. It's not safe to access these frag skbs.
syzbot reported two use-of-uninitialized-memory bugs caused by this:
BUG: KMSAN: uninit-value in sctp_inq_pop+0x15b7/0x1920 net/sctp/inqueue.c:211
sctp_inq_pop+0x15b7/0x1920 net/sctp/inqueue.c:211
sctp_assoc_bh_rcv+0x1a7/0xc50 net/sctp/associola.c:998
sctp_inq_push+0x2ef/0x380 net/sctp/inqueue.c:88
sctp_backlog_rcv+0x397/0xdb0 net/sctp/input.c:331
sk_backlog_rcv+0x13b/0x420 include/net/sock.h:1122
__release_sock+0x1da/0x330 net/core/sock.c:3106
release_sock+0x6b/0x250 net/core/sock.c:3660
sctp_wait_for_connect+0x487/0x820 net/sctp/socket.c:9360
sctp_sendmsg_to_asoc+0x1ec1/0x1f00 net/sctp/socket.c:1885
sctp_sendmsg+0x32b9/0x4a80 net/sctp/socket.c:2031
inet_sendmsg+0x25a/0x280 net/ipv4/af_inet.c:851
sock_sendmsg_nosec net/socket.c:718 [inline]
and
BUG: KMSAN: uninit-value in sctp_assoc_bh_rcv+0x34e/0xbc0 net/sctp/associola.c:987
sctp_assoc_bh_rcv+0x34e/0xbc0 net/sctp/associola.c:987
sctp_inq_push+0x2a3/0x350 net/sctp/inqueue.c:88
sctp_backlog_rcv+0x3c7/0xda0 net/sctp/input.c:331
sk_backlog_rcv+0x142/0x420 include/net/sock.h:1148
__release_sock+0x1d3/0x330 net/core/sock.c:3213
release_sock+0x6b/0x270 net/core/sock.c:3767
sctp_wait_for_connect+0x458/0x820 net/sctp/socket.c:9367
sctp_sendmsg_to_asoc+0x223a/0x2260 net/sctp/socket.c:1886
sctp_sendmsg+0x3910/0x49f0 net/sctp/socket.c:2032
inet_sendmsg+0x269/0x2a0 net/ipv4/af_inet.c:851
sock_sendmsg_nosec net/socket.c:712 [inline]
This patch fixes it by linearizing cloned gso packets in sctp_rcv().