In the Linux kernel, the following vulnerability has been resolved:
media: cxusb: no longer judge rbuf when the write fails
syzbot reported a uninit-value in cxusb_i2c_xfer. [1]
Only when the write operation of usb_bulk_msg() in dvb_usb_generic_rw()
succeeds and rlen is greater than 0, the read operation of usb_bulk_msg()
will be executed to read rlen bytes of data from the dvb device into the
rbuf.
In this case, although rlen is 1, the write operation failed which resulted
in the dvb read operation not being executed, and ultimately variable i was
not initialized.
[1]
BUG: KMSAN: uninit-value in cxusb_gpio_tuner drivers/media/usb/dvb-usb/cxusb.c:124 [inline]
BUG: KMSAN: uninit-value in cxusb_i2c_xfer+0x153a/0x1a60 drivers/media/usb/dvb-usb/cxusb.c:196
cxusb_gpio_tuner drivers/media/usb/dvb-usb/cxusb.c:124 [inline]
cxusb_i2c_xfer+0x153a/0x1a60 drivers/media/usb/dvb-usb/cxusb.c:196
__i2c_transfer+0xe25/0x3150 drivers/i2c/i2c-core-base.c:-1
i2c_transfer+0x317/0x4a0 drivers/i2c/i2c-core-base.c:2315
i2c_transfer_buffer_flags+0x125/0x1e0 drivers/i2c/i2c-core-base.c:2343
i2c_master_send include/linux/i2c.h:109 [inline]
i2cdev_write+0x210/0x280 drivers/i2c/i2c-dev.c:183
do_loop_readv_writev fs/read_write.c:848 [inline]
vfs_writev+0x963/0x14e0 fs/read_write.c:1057
do_writev+0x247/0x5c0 fs/read_write.c:1101
__do_sys_writev fs/read_write.c:1169 [inline]
__se_sys_writev fs/read_write.c:1166 [inline]
__x64_sys_writev+0x98/0xe0 fs/read_write.c:1166
x64_sys_call+0x2229/0x3c80 arch/x86/include/generated/asm/syscalls_64.h:21
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xcd/0x1e0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
In the Linux kernel, the following vulnerability has been resolved:
nfsd: Initialize ssc before laundromat_work to prevent NULL dereference
In nfs4_state_start_net(), laundromat_work may access nfsd_ssc through
nfs4_laundromat -> nfsd4_ssc_expire_umount. If nfsd_ssc isn't initialized,
this can cause NULL pointer dereference.
Normally the delayed start of laundromat_work allows sufficient time for
nfsd_ssc initialization to complete. However, when the kernel waits too
long for userspace responses (e.g. in nfs4_state_start_net ->
nfsd4_end_grace -> nfsd4_record_grace_done -> nfsd4_cld_grace_done ->
cld_pipe_upcall -> __cld_pipe_upcall -> wait_for_completion path), the
delayed work may start before nfsd_ssc initialization finishes.
Fix this by moving nfsd_ssc initialization before starting laundromat_work.
In the Linux kernel, the following vulnerability has been resolved:
media: imx-jpeg: Cleanup after an allocation error
When allocation failures are not cleaned up by the driver, further
allocation errors will be false-positives, which will cause buffers to
remain uninitialized and cause NULL pointer dereferences.
Ensure proper cleanup of failed allocations to prevent these issues.
In the Linux kernel, the following vulnerability has been resolved:
media: vivid: Change the siize of the composing
syzkaller found a bug:
BUG: KASAN: vmalloc-out-of-bounds in tpg_fill_plane_pattern drivers/media/common/v4l2-tpg/v4l2-tpg-core.c:2608 [inline]
BUG: KASAN: vmalloc-out-of-bounds in tpg_fill_plane_buffer+0x1a9c/0x5af0 drivers/media/common/v4l2-tpg/v4l2-tpg-core.c:2705
Write of size 1440 at addr ffffc9000d0ffda0 by task vivid-000-vid-c/5304
CPU: 0 UID: 0 PID: 5304 Comm: vivid-000-vid-c Not tainted 6.14.0-rc2-syzkaller-00039-g09fbf3d50205 #0
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0x169/0x550 mm/kasan/report.c:489
kasan_report+0x143/0x180 mm/kasan/report.c:602
kasan_check_range+0x282/0x290 mm/kasan/generic.c:189
__asan_memcpy+0x40/0x70 mm/kasan/shadow.c:106
tpg_fill_plane_pattern drivers/media/common/v4l2-tpg/v4l2-tpg-core.c:2608 [inline]
tpg_fill_plane_buffer+0x1a9c/0x5af0 drivers/media/common/v4l2-tpg/v4l2-tpg-core.c:2705
vivid_fillbuff drivers/media/test-drivers/vivid/vivid-kthread-cap.c:470 [inline]
vivid_thread_vid_cap_tick+0xf8e/0x60d0 drivers/media/test-drivers/vivid/vivid-kthread-cap.c:629
vivid_thread_vid_cap+0x8aa/0xf30 drivers/media/test-drivers/vivid/vivid-kthread-cap.c:767
kthread+0x7a9/0x920 kernel/kthread.c:464
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:148
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
</TASK>
The composition size cannot be larger than the size of fmt_cap_rect.
So execute v4l2_rect_map_inside() even if has_compose_cap == 0.
In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to do sanity check on sit_bitmap_size
w/ below testcase, resize will generate a corrupted image which
contains inconsistent metadata, so when mounting such image, it
will trigger kernel panic:
touch img
truncate -s $((512*1024*1024*1024)) img
mkfs.f2fs -f img $((256*1024*1024))
resize.f2fs -s -i img -t $((1024*1024*1024))
mount img /mnt/f2fs
------------[ cut here ]------------
kernel BUG at fs/f2fs/segment.h:863!
Oops: invalid opcode: 0000 [#1] SMP PTI
CPU: 11 UID: 0 PID: 3922 Comm: mount Not tainted 6.15.0-rc1+ #191 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:f2fs_ra_meta_pages+0x47c/0x490
Call Trace:
f2fs_build_segment_manager+0x11c3/0x2600
f2fs_fill_super+0xe97/0x2840
mount_bdev+0xf4/0x140
legacy_get_tree+0x2b/0x50
vfs_get_tree+0x29/0xd0
path_mount+0x487/0xaf0
__x64_sys_mount+0x116/0x150
do_syscall_64+0x82/0x190
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7fdbfde1bcfe
The reaseon is:
sit_i->bitmap_size is 192, so size of sit bitmap is 192*8=1536, at maximum
there are 1536 sit blocks, however MAIN_SEGS is 261893, so that sit_blk_cnt
is 4762, build_sit_entries() -> current_sit_addr() tries to access
out-of-boundary in sit_bitmap at offset from [1536, 4762), once sit_bitmap
and sit_bitmap_mirror is not the same, it will trigger f2fs_bug_on().
Let's add sanity check in f2fs_sanity_check_ckpt() to avoid panic.
In the Linux kernel, the following vulnerability has been resolved:
RDMA/iwcm: Fix use-after-free of work objects after cm_id destruction
The commit 59c68ac31e15 ("iw_cm: free cm_id resources on the last
deref") simplified cm_id resource management by freeing cm_id once all
references to the cm_id were removed. The references are removed either
upon completion of iw_cm event handlers or when the application destroys
the cm_id. This commit introduced the use-after-free condition where
cm_id_private object could still be in use by event handler works during
the destruction of cm_id. The commit aee2424246f9 ("RDMA/iwcm: Fix a
use-after-free related to destroying CM IDs") addressed this use-after-
free by flushing all pending works at the cm_id destruction.
However, still another use-after-free possibility remained. It happens
with the work objects allocated for each cm_id_priv within
alloc_work_entries() during cm_id creation, and subsequently freed in
dealloc_work_entries() once all references to the cm_id are removed.
If the cm_id's last reference is decremented in the event handler work,
the work object for the work itself gets removed, and causes the use-
after-free BUG below:
BUG: KASAN: slab-use-after-free in __pwq_activate_work+0x1ff/0x250
Read of size 8 at addr ffff88811f9cf800 by task kworker/u16:1/147091
CPU: 2 UID: 0 PID: 147091 Comm: kworker/u16:1 Not tainted 6.15.0-rc2+ #27 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-3.fc41 04/01/2014
Workqueue: 0x0 (iw_cm_wq)
Call Trace:
<TASK>
dump_stack_lvl+0x6a/0x90
print_report+0x174/0x554
? __virt_addr_valid+0x208/0x430
? __pwq_activate_work+0x1ff/0x250
kasan_report+0xae/0x170
? __pwq_activate_work+0x1ff/0x250
__pwq_activate_work+0x1ff/0x250
pwq_dec_nr_in_flight+0x8c5/0xfb0
process_one_work+0xc11/0x1460
? __pfx_process_one_work+0x10/0x10
? assign_work+0x16c/0x240
worker_thread+0x5ef/0xfd0
? __pfx_worker_thread+0x10/0x10
kthread+0x3b0/0x770
? __pfx_kthread+0x10/0x10
? rcu_is_watching+0x11/0xb0
? _raw_spin_unlock_irq+0x24/0x50
? rcu_is_watching+0x11/0xb0
? __pfx_kthread+0x10/0x10
ret_from_fork+0x30/0x70
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
Allocated by task 147416:
kasan_save_stack+0x2c/0x50
kasan_save_track+0x10/0x30
__kasan_kmalloc+0xa6/0xb0
alloc_work_entries+0xa9/0x260 [iw_cm]
iw_cm_connect+0x23/0x4a0 [iw_cm]
rdma_connect_locked+0xbfd/0x1920 [rdma_cm]
nvme_rdma_cm_handler+0x8e5/0x1b60 [nvme_rdma]
cma_cm_event_handler+0xae/0x320 [rdma_cm]
cma_work_handler+0x106/0x1b0 [rdma_cm]
process_one_work+0x84f/0x1460
worker_thread+0x5ef/0xfd0
kthread+0x3b0/0x770
ret_from_fork+0x30/0x70
ret_from_fork_asm+0x1a/0x30
Freed by task 147091:
kasan_save_stack+0x2c/0x50
kasan_save_track+0x10/0x30
kasan_save_free_info+0x37/0x60
__kasan_slab_free+0x4b/0x70
kfree+0x13a/0x4b0
dealloc_work_entries+0x125/0x1f0 [iw_cm]
iwcm_deref_id+0x6f/0xa0 [iw_cm]
cm_work_handler+0x136/0x1ba0 [iw_cm]
process_one_work+0x84f/0x1460
worker_thread+0x5ef/0xfd0
kthread+0x3b0/0x770
ret_from_fork+0x30/0x70
ret_from_fork_asm+0x1a/0x30
Last potentially related work creation:
kasan_save_stack+0x2c/0x50
kasan_record_aux_stack+0xa3/0xb0
__queue_work+0x2ff/0x1390
queue_work_on+0x67/0xc0
cm_event_handler+0x46a/0x820 [iw_cm]
siw_cm_upcall+0x330/0x650 [siw]
siw_cm_work_handler+0x6b9/0x2b20 [siw]
process_one_work+0x84f/0x1460
worker_thread+0x5ef/0xfd0
kthread+0x3b0/0x770
ret_from_fork+0x30/0x70
ret_from_fork_asm+0x1a/0x30
This BUG is reproducible by repeating the blktests test case nvme/061
for the rdma transport and the siw driver.
To avoid the use-after-free of cm_id_private work objects, ensure that
the last reference to the cm_id is decremented not in the event handler
works, but in the cm_id destruction context. For that purpose, mo
---truncated---