In the Linux kernel, the following vulnerability has been resolved:
perf/core: Prevent VMA split of buffer mappings
The perf mmap code is careful about mmap()'ing the user page with the
ringbuffer and additionally the auxiliary buffer, when the event supports
it. Once the first mapping is established, subsequent mapping have to use
the same offset and the same size in both cases. The reference counting for
the ringbuffer and the auxiliary buffer depends on this being correct.
Though perf does not prevent that a related mapping is split via mmap(2),
munmap(2) or mremap(2). A split of a VMA results in perf_mmap_open() calls,
which take reference counts, but then the subsequent perf_mmap_close()
calls are not longer fulfilling the offset and size checks. This leads to
reference count leaks.
As perf already has the requirement for subsequent mappings to match the
initial mapping, the obvious consequence is that VMA splits, caused by
resizing of a mapping or partial unmapping, have to be prevented.
Implement the vm_operations_struct::may_split() callback and return
unconditionally -EINVAL.
That ensures that the mapping offsets and sizes cannot be changed after the
fact. Remapping to a different fixed address with the same size is still
possible as it takes the references for the new mapping and drops those of
the old mapping.
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget : fix use-after-free in composite_dev_cleanup()
1. In func configfs_composite_bind() -> composite_os_desc_req_prepare():
if kmalloc fails, the pointer cdev->os_desc_req will be freed but not
set to NULL. Then it will return a failure to the upper-level function.
2. in func configfs_composite_bind() -> composite_dev_cleanup():
it will checks whether cdev->os_desc_req is NULL. If it is not NULL, it
will attempt to use it.This will lead to a use-after-free issue.
BUG: KASAN: use-after-free in composite_dev_cleanup+0xf4/0x2c0
Read of size 8 at addr 0000004827837a00 by task init/1
CPU: 10 PID: 1 Comm: init Tainted: G O 5.10.97-oh #1
kasan_report+0x188/0x1cc
__asan_load8+0xb4/0xbc
composite_dev_cleanup+0xf4/0x2c0
configfs_composite_bind+0x210/0x7ac
udc_bind_to_driver+0xb4/0x1ec
usb_gadget_probe_driver+0xec/0x21c
gadget_dev_desc_UDC_store+0x264/0x27c
In the Linux kernel, the following vulnerability has been resolved:
net/sched: Restrict conditions for adding duplicating netems to qdisc tree
netem_enqueue's duplication prevention logic breaks when a netem
resides in a qdisc tree with other netems - this can lead to a
soft lockup and OOM loop in netem_dequeue, as seen in [1].
Ensure that a duplicating netem cannot exist in a tree with other
netems.
Previous approaches suggested in discussions in chronological order:
1) Track duplication status or ttl in the sk_buff struct. Considered
too specific a use case to extend such a struct, though this would
be a resilient fix and address other previous and potential future
DOS bugs like the one described in loopy fun [2].
2) Restrict netem_enqueue recursion depth like in act_mirred with a
per cpu variable. However, netem_dequeue can call enqueue on its
child, and the depth restriction could be bypassed if the child is a
netem.
3) Use the same approach as in 2, but add metadata in netem_skb_cb
to handle the netem_dequeue case and track a packet's involvement
in duplication. This is an overly complex approach, and Jamal
notes that the skb cb can be overwritten to circumvent this
safeguard.
4) Prevent the addition of a netem to a qdisc tree if its ancestral
path contains a netem. However, filters and actions can cause a
packet to change paths when re-enqueued to the root from netem
duplication, leading us to the current solution: prevent a
duplicating netem from inhabiting the same tree as other netems.
[1] https://lore.kernel.org/netdev/8DuRWwfqjoRDLDmBMlIfbrsZg9Gx50DHJc1ilxsEBNe2D6NMoigR_eIRIG0LOjMc3r10nUUZtArXx4oZBIdUfZQrwjcQhdinnMis_0G7VEk=@willsroot.io/
[2] https://lwn.net/Articles/719297/
In the Linux kernel, the following vulnerability has been resolved:
ipv6: mcast: Delay put pmc->idev in mld_del_delrec()
pmc->idev is still used in ip6_mc_clear_src(), so as mld_clear_delrec()
does, the reference should be put after ip6_mc_clear_src() return.
In the Linux kernel, the following vulnerability has been resolved:
mptcp: plug races between subflow fail and subflow creation
We have races similar to the one addressed by the previous patch between
subflow failing and additional subflow creation. They are just harder to
trigger.
The solution is similar. Use a separate flag to track the condition
'socket state prevent any additional subflow creation' protected by the
fallback lock.
The socket fallback makes such flag true, and also receiving or sending
an MP_FAIL option.
The field 'allow_infinite_fallback' is now always touched under the
relevant lock, we can drop the ONCE annotation on write.
In the Linux kernel, the following vulnerability has been resolved:
net: appletalk: Fix device refcount leak in atrtr_create()
When updating an existing route entry in atrtr_create(), the old device
reference was not being released before assigning the new device,
leading to a device refcount leak. Fix this by calling dev_put() to
release the old device reference before holding the new one.
In the Linux kernel, the following vulnerability has been resolved:
drm/tegra: nvdec: Fix dma_alloc_coherent error check
Check for NULL return value with dma_alloc_coherent, in line with
Robin's fix for vic.c in 'drm/tegra: vic: Fix DMA API misuse'.
In the Linux kernel, the following vulnerability has been resolved:
atm: clip: Fix memory leak of struct clip_vcc.
ioctl(ATMARP_MKIP) allocates struct clip_vcc and set it to
vcc->user_back.
The code assumes that vcc_destroy_socket() passes NULL skb
to vcc->push() when the socket is close()d, and then clip_push()
frees clip_vcc.
However, ioctl(ATMARPD_CTRL) sets NULL to vcc->push() in
atm_init_atmarp(), resulting in memory leak.
Let's serialise two ioctl() by lock_sock() and check vcc->push()
in atm_init_atmarp() to prevent memleak.
In the Linux kernel, the following vulnerability has been resolved:
hwmon: (corsair-cpro) Validate the size of the received input buffer
Add buffer_recv_size to store the size of the received bytes.
Validate buffer_recv_size in send_usb_cmd().
In the Linux kernel, the following vulnerability has been resolved:
phy: tegra: xusb: Fix unbalanced regulator disable in UTMI PHY mode
When transitioning from USB_ROLE_DEVICE to USB_ROLE_NONE, the code
assumed that the regulator should be disabled. However, if the regulator
is marked as always-on, regulator_is_enabled() continues to return true,
leading to an incorrect attempt to disable a regulator which is not
enabled.
This can result in warnings such as:
[ 250.155624] WARNING: CPU: 1 PID: 7326 at drivers/regulator/core.c:3004
_regulator_disable+0xe4/0x1a0
[ 250.155652] unbalanced disables for VIN_SYS_5V0
To fix this, we move the regulator control logic into
tegra186_xusb_padctl_id_override() function since it's directly related
to the ID override state. The regulator is now only disabled when the role
transitions from USB_ROLE_HOST to USB_ROLE_NONE, by checking the VBUS_ID
register. This ensures that regulator enable/disable operations are
properly balanced and only occur when actually transitioning to/from host
mode.