In the Linux kernel, the following vulnerability has been resolved:
btrfs: add a sanity check for btrfs root in btrfs_search_slot()
Syzbot reports a null-ptr-deref in btrfs_search_slot().
The reproducer is using rescue=ibadroots, and the extent tree root is
corrupted thus the extent tree is NULL.
When scrub tries to search the extent tree to gather the needed extent
info, btrfs_search_slot() doesn't check if the target root is NULL or
not, resulting the null-ptr-deref.
Add sanity check for btrfs root before using it in btrfs_search_slot().
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix handling of plane refcount
[Why]
The mechanism to backup and restore plane states doesn't maintain
refcount, which can cause issues if the refcount of the plane changes
in between backup and restore operations, such as memory leaks if the
refcount was supposed to go down, or double frees / invalid memory
accesses if the refcount was supposed to go up.
[How]
Cache and re-apply current refcount when restoring plane states.
In the Linux kernel, the following vulnerability has been resolved:
drm/sti: avoid potential dereference of error pointers
The return value of drm_atomic_get_crtc_state() needs to be
checked. To avoid use of error pointer 'crtc_state' in case
of the failure.
In the Linux kernel, the following vulnerability has been resolved:
drm/sti: avoid potential dereference of error pointers in sti_gdp_atomic_check
The return value of drm_atomic_get_crtc_state() needs to be
checked. To avoid use of error pointer 'crtc_state' in case
of the failure.
In the Linux kernel, the following vulnerability has been resolved:
drm/sti: avoid potential dereference of error pointers in sti_hqvdp_atomic_check
The return value of drm_atomic_get_crtc_state() needs to be
checked. To avoid use of error pointer 'crtc_state' in case
of the failure.
In the Linux kernel, the following vulnerability has been resolved:
nfsd: fix nfs4_openowner leak when concurrent nfsd4_open occur
The action force umount(umount -f) will attempt to kill all rpc_task even
umount operation may ultimately fail if some files remain open.
Consequently, if an action attempts to open a file, it can potentially
send two rpc_task to nfs server.
NFS CLIENT
thread1 thread2
open("file")
...
nfs4_do_open
_nfs4_do_open
_nfs4_open_and_get_state
_nfs4_proc_open
nfs4_run_open_task
/* rpc_task1 */
rpc_run_task
rpc_wait_for_completion_task
umount -f
nfs_umount_begin
rpc_killall_tasks
rpc_signal_task
rpc_task1 been wakeup
and return -512
_nfs4_do_open // while loop
...
nfs4_run_open_task
/* rpc_task2 */
rpc_run_task
rpc_wait_for_completion_task
While processing an open request, nfsd will first attempt to find or
allocate an nfs4_openowner. If it finds an nfs4_openowner that is not
marked as NFS4_OO_CONFIRMED, this nfs4_openowner will released. Since
two rpc_task can attempt to open the same file simultaneously from the
client to server, and because two instances of nfsd can run
concurrently, this situation can lead to lots of memory leak.
Additionally, when we echo 0 to /proc/fs/nfsd/threads, warning will be
triggered.
NFS SERVER
nfsd1 nfsd2 echo 0 > /proc/fs/nfsd/threads
nfsd4_open
nfsd4_process_open1
find_or_alloc_open_stateowner
// alloc oo1, stateid1
nfsd4_open
nfsd4_process_open1
find_or_alloc_open_stateowner
// find oo1, without NFS4_OO_CONFIRMED
release_openowner
unhash_openowner_locked
list_del_init(&oo->oo_perclient)
// cannot find this oo
// from client, LEAK!!!
alloc_stateowner // alloc oo2
nfsd4_process_open2
init_open_stateid
// associate oo1
// with stateid1, stateid1 LEAK!!!
nfs4_get_vfs_file
// alloc nfsd_file1 and nfsd_file_mark1
// all LEAK!!!
nfsd4_process_open2
...
write_threads
...
nfsd_destroy_serv
nfsd_shutdown_net
nfs4_state_shutdown_net
nfs4_state_destroy_net
destroy_client
__destroy_client
// won't find oo1!!!
nfsd_shutdown_generic
nfsd_file_cache_shutdown
kmem_cache_destroy
for nfsd_file_slab
and nfsd_file_mark_slab
// bark since nfsd_file1
// and nfsd_file_mark1
// still alive
=======================================================================
BUG nfsd_file (Not tainted): Objects remaining in nfsd_file on
__kmem_cache_shutdown()
-----------------------------------------------------------------------
Slab 0xffd4000004438a80 objects=34 used=1 fp=0xff11000110e2ad28
flags=0x17ffffc0000240(workingset|head|node=0|zone=2|lastcpupid=0x1fffff)
CPU: 4 UID: 0 PID: 757 Comm: sh Not tainted 6.12.0-rc6+ #19
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.16.1-2.fc37 04/01/2014
Call Trace:
<TASK>
dum
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
quota: flush quota_release_work upon quota writeback
One of the paths quota writeback is called from is:
freeze_super()
sync_filesystem()
ext4_sync_fs()
dquot_writeback_dquots()
Since we currently don't always flush the quota_release_work queue in
this path, we can end up with the following race:
1. dquot are added to releasing_dquots list during regular operations.
2. FS Freeze starts, however, this does not flush the quota_release_work queue.
3. Freeze completes.
4. Kernel eventually tries to flush the workqueue while FS is frozen which
hits a WARN_ON since transaction gets started during frozen state:
ext4_journal_check_start+0x28/0x110 [ext4] (unreliable)
__ext4_journal_start_sb+0x64/0x1c0 [ext4]
ext4_release_dquot+0x90/0x1d0 [ext4]
quota_release_workfn+0x43c/0x4d0
Which is the following line:
WARN_ON(sb->s_writers.frozen == SB_FREEZE_COMPLETE);
Which ultimately results in generic/390 failing due to dmesg
noise. This was detected on powerpc machine 15 cores.
To avoid this, make sure to flush the workqueue during
dquot_writeback_dquots() so we dont have any pending workitems after
freeze.
In the Linux kernel, the following vulnerability has been resolved:
net/sched: netem: account for backlog updates from child qdisc
In general, 'qlen' of any classful qdisc should keep track of the
number of packets that the qdisc itself and all of its children holds.
In case of netem, 'qlen' only accounts for the packets in its internal
tfifo. When netem is used with a child qdisc, the child qdisc can use
'qdisc_tree_reduce_backlog' to inform its parent, netem, about created
or dropped SKBs. This function updates 'qlen' and the backlog statistics
of netem, but netem does not account for changes made by a child qdisc.
'qlen' then indicates the wrong number of packets in the tfifo.
If a child qdisc creates new SKBs during enqueue and informs its parent
about this, netem's 'qlen' value is increased. When netem dequeues the
newly created SKBs from the child, the 'qlen' in netem is not updated.
If 'qlen' reaches the configured sch->limit, the enqueue function stops
working, even though the tfifo is not full.
Reproduce the bug:
Ensure that the sender machine has GSO enabled. Configure netem as root
qdisc and tbf as its child on the outgoing interface of the machine
as follows:
$ tc qdisc add dev <oif> root handle 1: netem delay 100ms limit 100
$ tc qdisc add dev <oif> parent 1:0 tbf rate 50Mbit burst 1542 latency 50ms
Send bulk TCP traffic out via this interface, e.g., by running an iPerf3
client on the machine. Check the qdisc statistics:
$ tc -s qdisc show dev <oif>
Statistics after 10s of iPerf3 TCP test before the fix (note that
netem's backlog > limit, netem stopped accepting packets):
qdisc netem 1: root refcnt 2 limit 1000 delay 100ms
Sent 2767766 bytes 1848 pkt (dropped 652, overlimits 0 requeues 0)
backlog 4294528236b 1155p requeues 0
qdisc tbf 10: parent 1:1 rate 50Mbit burst 1537b lat 50ms
Sent 2767766 bytes 1848 pkt (dropped 327, overlimits 7601 requeues 0)
backlog 0b 0p requeues 0
Statistics after the fix:
qdisc netem 1: root refcnt 2 limit 1000 delay 100ms
Sent 37766372 bytes 24974 pkt (dropped 9, overlimits 0 requeues 0)
backlog 0b 0p requeues 0
qdisc tbf 10: parent 1:1 rate 50Mbit burst 1537b lat 50ms
Sent 37766372 bytes 24974 pkt (dropped 327, overlimits 96017 requeues 0)
backlog 0b 0p requeues 0
tbf segments the GSO SKBs (tbf_segment) and updates the netem's 'qlen'.
The interface fully stops transferring packets and "locks". In this case,
the child qdisc and tfifo are empty, but 'qlen' indicates the tfifo is at
its limit and no more packets are accepted.
This patch adds a counter for the entries in the tfifo. Netem's 'qlen' is
only decreased when a packet is returned by its dequeue function, and not
during enqueuing into the child qdisc. External updates to 'qlen' are thus
accounted for and only the behavior of the backlog statistics changes. As
in other qdiscs, 'qlen' then keeps track of how many packets are held in
netem and all of its children. As before, sch->limit remains as the
maximum number of packets in the tfifo. The same applies to netem's
backlog statistics.
In the Linux kernel, the following vulnerability has been resolved:
media: dvb-frontends: dib3000mb: fix uninit-value in dib3000_write_reg
Syzbot reports [1] an uninitialized value issue found by KMSAN in
dib3000_read_reg().
Local u8 rb[2] is used in i2c_transfer() as a read buffer; in case
that call fails, the buffer may end up with some undefined values.
Since no elaborate error handling is expected in dib3000_write_reg(),
simply zero out rb buffer to mitigate the problem.
[1] Syzkaller report
dvb-usb: bulk message failed: -22 (6/0)
=====================================================
BUG: KMSAN: uninit-value in dib3000mb_attach+0x2d8/0x3c0 drivers/media/dvb-frontends/dib3000mb.c:758
dib3000mb_attach+0x2d8/0x3c0 drivers/media/dvb-frontends/dib3000mb.c:758
dibusb_dib3000mb_frontend_attach+0x155/0x2f0 drivers/media/usb/dvb-usb/dibusb-mb.c:31
dvb_usb_adapter_frontend_init+0xed/0x9a0 drivers/media/usb/dvb-usb/dvb-usb-dvb.c:290
dvb_usb_adapter_init drivers/media/usb/dvb-usb/dvb-usb-init.c:90 [inline]
dvb_usb_init drivers/media/usb/dvb-usb/dvb-usb-init.c:186 [inline]
dvb_usb_device_init+0x25a8/0x3760 drivers/media/usb/dvb-usb/dvb-usb-init.c:310
dibusb_probe+0x46/0x250 drivers/media/usb/dvb-usb/dibusb-mb.c:110
...
Local variable rb created at:
dib3000_read_reg+0x86/0x4e0 drivers/media/dvb-frontends/dib3000mb.c:54
dib3000mb_attach+0x123/0x3c0 drivers/media/dvb-frontends/dib3000mb.c:758
...
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: at_xdmac: avoid null_prt_deref in at_xdmac_prep_dma_memset
The at_xdmac_memset_create_desc may return NULL, which will lead to a
null pointer dereference. For example, the len input is error, or the
atchan->free_descs_list is empty and memory is exhausted. Therefore, add
check to avoid this.