In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to shrink read extent node in batches
We use rwlock to protect core structure data of extent tree during
its shrink, however, if there is a huge number of extent nodes in
extent tree, during shrink of extent tree, it may hold rwlock for
a very long time, which may trigger kernel hang issue.
This patch fixes to shrink read extent node in batches, so that,
critical region of the rwlock can be shrunk to avoid its extreme
long time hold.
In the Linux kernel, the following vulnerability has been resolved:
i3c: Use i3cdev->desc->info instead of calling i3c_device_get_info() to avoid deadlock
A deadlock may happen since the i3c_master_register() acquires
&i3cbus->lock twice. See the log below.
Use i3cdev->desc->info instead of calling i3c_device_info() to
avoid acquiring the lock twice.
v2:
- Modified the title and commit message
============================================
WARNING: possible recursive locking detected
6.11.0-mainline
--------------------------------------------
init/1 is trying to acquire lock:
f1ffff80a6a40dc0 (&i3cbus->lock){++++}-{3:3}, at: i3c_bus_normaluse_lock
but task is already holding lock:
f1ffff80a6a40dc0 (&i3cbus->lock){++++}-{3:3}, at: i3c_master_register
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&i3cbus->lock);
lock(&i3cbus->lock);
*** DEADLOCK ***
May be due to missing lock nesting notation
2 locks held by init/1:
#0: fcffff809b6798f8 (&dev->mutex){....}-{3:3}, at: __driver_attach
#1: f1ffff80a6a40dc0 (&i3cbus->lock){++++}-{3:3}, at: i3c_master_register
stack backtrace:
CPU: 6 UID: 0 PID: 1 Comm: init
Call trace:
dump_backtrace+0xfc/0x17c
show_stack+0x18/0x28
dump_stack_lvl+0x40/0xc0
dump_stack+0x18/0x24
print_deadlock_bug+0x388/0x390
__lock_acquire+0x18bc/0x32ec
lock_acquire+0x134/0x2b0
down_read+0x50/0x19c
i3c_bus_normaluse_lock+0x14/0x24
i3c_device_get_info+0x24/0x58
i3c_device_uevent+0x34/0xa4
dev_uevent+0x310/0x384
kobject_uevent_env+0x244/0x414
kobject_uevent+0x14/0x20
device_add+0x278/0x460
device_register+0x20/0x34
i3c_master_register_new_i3c_devs+0x78/0x154
i3c_master_register+0x6a0/0x6d4
mtk_i3c_master_probe+0x3b8/0x4d8
platform_probe+0xa0/0xe0
really_probe+0x114/0x454
__driver_probe_device+0xa0/0x15c
driver_probe_device+0x3c/0x1ac
__driver_attach+0xc4/0x1f0
bus_for_each_dev+0x104/0x160
driver_attach+0x24/0x34
bus_add_driver+0x14c/0x294
driver_register+0x68/0x104
__platform_driver_register+0x20/0x30
init_module+0x20/0xfe4
do_one_initcall+0x184/0x464
do_init_module+0x58/0x1ec
load_module+0xefc/0x10c8
__arm64_sys_finit_module+0x238/0x33c
invoke_syscall+0x58/0x10c
el0_svc_common+0xa8/0xdc
do_el0_svc+0x1c/0x28
el0_svc+0x50/0xac
el0t_64_sync_handler+0x70/0xbc
el0t_64_sync+0x1a8/0x1ac
In the Linux kernel, the following vulnerability has been resolved:
i3c: mipi-i3c-hci: Mask ring interrupts before ring stop request
Bus cleanup path in DMA mode may trigger a RING_OP_STAT interrupt when
the ring is being stopped. Depending on timing between ring stop request
completion, interrupt handler removal and code execution this may lead
to a NULL pointer dereference in hci_dma_irq_handler() if it gets to run
after the io_data pointer is set to NULL in hci_dma_cleanup().
Prevent this my masking the ring interrupts before ring stop request.
In the Linux kernel, the following vulnerability has been resolved:
pinmux: Use sequential access to access desc->pinmux data
When two client of the same gpio call pinctrl_select_state() for the
same functionality, we are seeing NULL pointer issue while accessing
desc->mux_owner.
Let's say two processes A, B executing in pin_request() for the same pin
and process A updates the desc->mux_usecount but not yet updated the
desc->mux_owner while process B see the desc->mux_usecount which got
updated by A path and further executes strcmp and while accessing
desc->mux_owner it crashes with NULL pointer.
Serialize the access to mux related setting with a mutex lock.
cpu0 (process A) cpu1(process B)
pinctrl_select_state() { pinctrl_select_state() {
pin_request() { pin_request() {
...
....
} else {
desc->mux_usecount++;
desc->mux_usecount && strcmp(desc->mux_owner, owner)) {
if (desc->mux_usecount > 1)
return 0;
desc->mux_owner = owner;
} }
In the Linux kernel, the following vulnerability has been resolved:
sched: fix warning in sched_setaffinity
Commit 8f9ea86fdf99b added some logic to sched_setaffinity that included
a WARN when a per-task affinity assignment races with a cpuset update.
Specifically, we can have a race where a cpuset update results in the
task affinity no longer being a subset of the cpuset. That's fine; we
have a fallback to instead use the cpuset mask. However, we have a WARN
set up that will trigger if the cpuset mask has no overlap at all with
the requested task affinity. This shouldn't be a warning condition; its
trivial to create this condition.
Reproduced the warning by the following setup:
- $PID inside a cpuset cgroup
- another thread repeatedly switching the cpuset cpus from 1-2 to just 1
- another thread repeatedly setting the $PID affinity (via taskset) to 2
In the Linux kernel, the following vulnerability has been resolved:
ACPI: x86: Add adev NULL check to acpi_quirk_skip_serdev_enumeration()
acpi_dev_hid_match() does not check for adev == NULL, dereferencing
it unconditional.
Add a check for adev being NULL before calling acpi_dev_hid_match().
At the moment acpi_quirk_skip_serdev_enumeration() is never called with
a controller_parent without an ACPI companion, but better safe than sorry.
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_socket: remove WARN_ON_ONCE on maximum cgroup level
cgroup maximum depth is INT_MAX by default, there is a cgroup toggle to
restrict this maximum depth to a more reasonable value not to harm
performance. Remove unnecessary WARN_ON_ONCE which is reachable from
userspace.
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Adding array index check to prevent memory corruption
[Why & How]
Array indices out of bound caused memory corruption. Adding checks to
ensure that array index stays in bound.
In the Linux kernel, the following vulnerability has been resolved:
MIPS: Loongson64: DTS: Really fix PCIe port nodes for ls7a
Fix the dtc warnings:
arch/mips/boot/dts/loongson/ls7a-pch.dtsi:68.16-416.5: Warning (interrupt_provider): /bus@10000000/pci@1a000000: '#interrupt-cells' found, but node is not an interrupt provider
arch/mips/boot/dts/loongson/ls7a-pch.dtsi:68.16-416.5: Warning (interrupt_provider): /bus@10000000/pci@1a000000: '#interrupt-cells' found, but node is not an interrupt provider
arch/mips/boot/dts/loongson/loongson64g_4core_ls7a.dtb: Warning (interrupt_map): Failed prerequisite 'interrupt_provider'
And a runtime warning introduced in commit 045b14ca5c36 ("of: WARN on
deprecated #address-cells/#size-cells handling"):
WARNING: CPU: 0 PID: 1 at drivers/of/base.c:106 of_bus_n_addr_cells+0x9c/0xe0
Missing '#address-cells' in /bus@10000000/pci@1a000000/pci_bridge@9,0
The fix is similar to commit d89a415ff8d5 ("MIPS: Loongson64: DTS: Fix PCIe
port nodes for ls7a"), which has fixed the issue for ls2k (despite its
subject mentions ls7a).
In the Linux kernel, the following vulnerability has been resolved:
soc: imx8m: Probe the SoC driver as platform driver
With driver_async_probe=* on kernel command line, the following trace is
produced because on i.MX8M Plus hardware because the soc-imx8m.c driver
calls of_clk_get_by_name() which returns -EPROBE_DEFER because the clock
driver is not yet probed. This was not detected during regular testing
without driver_async_probe.
Convert the SoC code to platform driver and instantiate a platform device
in its current device_initcall() to probe the platform driver. Rework
.soc_revision callback to always return valid error code and return SoC
revision via parameter. This way, if anything in the .soc_revision callback
return -EPROBE_DEFER, it gets propagated to .probe and the .probe will get
retried later.
"
------------[ cut here ]------------
WARNING: CPU: 1 PID: 1 at drivers/soc/imx/soc-imx8m.c:115 imx8mm_soc_revision+0xdc/0x180
CPU: 1 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.11.0-next-20240924-00002-g2062bb554dea #603
Hardware name: DH electronics i.MX8M Plus DHCOM Premium Developer Kit (3) (DT)
pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : imx8mm_soc_revision+0xdc/0x180
lr : imx8mm_soc_revision+0xd0/0x180
sp : ffff8000821fbcc0
x29: ffff8000821fbce0 x28: 0000000000000000 x27: ffff800081810120
x26: ffff8000818a9970 x25: 0000000000000006 x24: 0000000000824311
x23: ffff8000817f42c8 x22: ffff0000df8be210 x21: fffffffffffffdfb
x20: ffff800082780000 x19: 0000000000000001 x18: ffffffffffffffff
x17: ffff800081fff418 x16: ffff8000823e1000 x15: ffff0000c03b65e8
x14: ffff0000c00051b0 x13: ffff800082790000 x12: 0000000000000801
x11: ffff80008278ffff x10: ffff80008209d3a6 x9 : ffff80008062e95c
x8 : ffff8000821fb9a0 x7 : 0000000000000000 x6 : 00000000000080e3
x5 : ffff0000df8c03d8 x4 : 0000000000000000 x3 : 0000000000000000
x2 : 0000000000000000 x1 : fffffffffffffdfb x0 : fffffffffffffdfb
Call trace:
imx8mm_soc_revision+0xdc/0x180
imx8_soc_init+0xb0/0x1e0
do_one_initcall+0x94/0x1a8
kernel_init_freeable+0x240/0x2a8
kernel_init+0x28/0x140
ret_from_fork+0x10/0x20
---[ end trace 0000000000000000 ]---
SoC: i.MX8MP revision 1.1
"